Improvement of plasticity by tailoring combination of constituent elements in Ti-rich Ti−Zr−Be−Cu−Ni bulk metallic glasses


The effect of replacement of Ti with Y or Nb in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses (BMGs) has been investigated. The minor addition (MA) of Y (Y–Ti: +58 kJ/mol) induced phase separation into Y-rich crystalline particles and Ti-rich amorphous matrix, while the MA of Nb (Nb–Ti: +10 kJ/mol) led to nanocrystallization in Ti-rich BMGs with icosahedral nuclei. This result indicates that MA of elements having positive enthalpy of mixing can induce a different degree of instability in the single amorphous matrix depending on the amount of repulsive interaction energy. In particular, MA of Nb (up to 4 at.%) significantly increased the compressive fracture strain (∈f) up to ∼9.35 ± 0.2%, which indicates that the plasticity of BMGs can be enhanced by the size-modulated icosahedral phase embedded in the amorphous matrix.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10


  1. 1.

    W.H. Wang: Role of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52, 540 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    CAS  Google Scholar 

  3. 3.

    L-Q. Xing, Y. Li, K.T. Ramesh, J. Li, and T.C. Hufnagel: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B 64, 180201 (2001).

    Article  Google Scholar 

  4. 4.

    M.H. Lee, J.Y. Lee, D.H. Bae, W.T. Kim, D.J. Sordelet, D.H. Kim, M.H. Lee, D.H. Bae, W.T. Kim, and D.H. Kim: A development of Ni-based alloys with enhanced plasticity. Mater. Trans. 44, 2084 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    E.S. Park, J.Y. Lee, and D.H. Kim: Effect of Ag addition on the improvement of glass-forming ability and plasticity of Mg–Cu–Gd bulk metallic glasses. J. Mater. Res. 20, 2379 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    E.S. Park, H.J. Chang, D.H. Kim, T. Ohkubo, and K. Hono: Effect of the substitution of Ag and Ni for Cu on the glass forming ability and plasticity of Cu60Zr30Ti10 alloy. Scripta Mater. 54, 1569 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    J.C. Oh, T. Ohkubo, Y.C. Kim, E. Fleury, and K. Hono: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Mater. 53, 165 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    E.S. Park and D.H. Kim: Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallic glasses. Acta Mater. 54, 2597 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    E.S. Park, J.S. Kyeong, and D.H. Kim: Phase separation and improved plasticity by modulated heterogeneity in Cu–(Zr,Hf)–(Gd,Y)–Al metallic glasses. Scripta Mater. 57, 49 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    Y.C. Kim, J.H. Na, J.M. Park, J.K. Lee, W.T. Kim, and D.H. Kim: Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 83, 3093 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    Y.C. Kim, W.T. Kim, and D.H. Kim: A development of Ti-based bulk metallic glasses. Mater. Sci. Eng., A 375–377, 127 (2004).

    Article  Google Scholar 

  12. 12.

    J.M. Park, H.J. Chang, K.H. Han, W.T. Kim, and D.H. Kim: Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses. Scripta Mater. 53, 1 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    F. Guo, H.J. Wang, S.J. Poon, and G.J. Shiflet: Ductile titaniumbased glassy alloy ingots. Appl. Phys. Lett. 86, 091907 (2005).

    Article  Google Scholar 

  14. 14.

    A. Inoue, T. Zhang, J. Saida, and M. Matsushita: Enhancement of strength and ductility in Zr-based bulk amorphous alloys by precipitation of quasicrystalline phase. Mater. Trans., JIM 41, 1511 (2000).

    CAS  Article  Google Scholar 

  15. 15.

    J. Eckert, J. Das, S. Pauly, and C. Duhamel: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    A. Gebert, J. Eckert, and L. Schultz: Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu7.5Ni10 metallic glass. Acta Mater. 46, 5475 (1998).

    CAS  Article  Google Scholar 

  17. 17.

    A.A. Kündig, M. Ohnuma, D.H. Ping, T. Ohkub, and K. Hono: In-situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 52, 2441 (2004).

    Article  Google Scholar 

  18. 18.

    B.J. Park, H.J. Chang, W.T. Kim, and D.H. Kim: In situ formation of two amorphous phases by liquid phase separation in Y–Ti–Al–Co alloy. Appl. Phys. Lett. 85, 6353 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    N. Mattern, U. Kühn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock, and L. Schultz: Microstructure and thermal behavior of two-phase amorphous Ni–Nb–Y alloy. Scripta Mater. 53, 271 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    B.J. Park, H.J. Chang, D.H. Kim, W.T. Kim, K. Chattopadhyay, T.A. Abinandanan, and S. Bhattacharyya: Phase separating bulk metallic glass: A hierarchical composite. Phys. Rev. Lett. 96, 245503 (2006).

    Article  Google Scholar 

  21. 21.

    E.S. Park, E.Y. Jeong, J-K. Lee, J.C. Bea, A.R. Kwon, A. Gebert, L. Schultz, H.J. Chang, and D.H. Kim: In situ formation of two glassy phases in the Nd–Zr–Al–Co alloy system. Scripta Mater. 56, 197 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    J.Y. Lee, K.H. Han, J.M. Park, K. Chattopadhyay, W.T. Kim, and D.H. Kim: Deformation and evolution of shear bands under compressive loading in bulk metallic glasses. Acta Mater. 54, 5271 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    Y. Zhang, J. Chen, G.L. Chen, and X.J. Liu: Glass formation mechanism of minor yttrium addition in CuZrAl alloys. Appl. Phys. Lett. 89, 131904 (2006).

    Article  Google Scholar 

  24. 24.

    S.W. Lee, M.Y. Huh, S.W. Chae, and J.C. Lee: Mechanism of the deformation-induced nanocrystallization in a Cu-based bulk amorphous alloy under uniaxial compression. Scripta Mater. 54, 1439 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    A.R. Miedema: The heat of formation of alloys. Philips Tech. Rev. 36, 217 (1976).

    CAS  Google Scholar 

  26. 26.

    M. Chen, A. Inoue, W. Zhang, and T. Sakurai: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).

    Article  Google Scholar 

  27. 27.

    C. Fan, H. Li, L.J. Kecskes, K. Tao, H. Choo, P.K. Liaw, and C.T. Liu: Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures. Phys. Rev. Lett. 96, 145506 (2006).

    Article  Google Scholar 

Download references


This work was supported by the Global Research Laboratory Program of the Korean Ministry of Science. One of the authors (E.S. Park) was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2006-214-D00066). The author is indebted to Prof. Frans Spaepen, Harvard University for thoughtful advice.

Author information



Corresponding author

Correspondence to E. S. Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, E.S., Chang, H.J., Lee, J.Y. et al. Improvement of plasticity by tailoring combination of constituent elements in Ti-rich Ti−Zr−Be−Cu−Ni bulk metallic glasses. Journal of Materials Research 22, 3440–3447 (2007).

Download citation