Dielectric and magnetic properties in Ta-substituted BiFeO3 ceramics


The dielectric and magnetic properties were investigated in Ta-substituted BiFeO3 polycrystalline ceramics synthesized by a solid-state reaction. The Ta substitution decreased the grain size by two orders of magnitude compared with that of unsubstituted ceramics and increased the electrical resistivity by 6 orders of magnitude. The high resistivity and low dielectric loss allowed the dielectric constant to be determined at room temperature. The magnetic hysteresis loops were observed in the Ta-substituted BiFeO3, and the appearance of ferromagnetism was closely associated with the distortion of the oxygen octahedra by the Ta substitution. The coupling between the electric and magnetic dipoles was examined by determining the changes of the dielectric constant with the external magnetic field.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10


  1. 1.

    Y.E. Roginskaya, Y.Y. Tomashpolskii, Y.N. Venevtsev, V.M. Petrov, and G.S. Zhdanov: The nature of the dielectric and magnetic properties of BiFeO3. Sov. Phys. JETP 23, 47 (1966).

    Google Scholar 

  2. 2.

    F. Kubel and H. Schmid: Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr. B46, 698 (1990).

    CAS  Article  Google Scholar 

  3. 3.

    S.V. Kiselev, R.P. Ozerov, and G.S. Zhdanov: Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov. Phys. Dokl. 7, 742 (1963).

    Google Scholar 

  4. 4.

    J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, and K.M. Rabe: First-principle study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113 (2005).

    Article  Google Scholar 

  5. 5.

    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh: Epitaxial BiFeO3 multiferroic thin film heterostructure. Science 299, 1719 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    K.Y. Yun, D. Ricinschi, T. Kanashima, M. Noda, and M. Okuyama: Giant ferroelectric polarization beyond 150 μC/cm2 in BiFeO3 thin film. Jpn.J. Appl. Phys. 43, L647 (2004).

  7. 7.

    J.R. Teague, R. Gerson, and W.J. James: Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8, 1073 (1970).

    CAS  Article  Google Scholar 

  8. 8.

    V.R. Palkar, J. John, and R. Pinto: Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin film. Appl. Phys. Lett. 80, 1628 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    R.T. Smith, G.D. Achenbach, R. Gerson, and W.J. James: Dielectric properties of solid solutions of BiFeO3 with Pb(Ti,Zr)O3 at high temperature and high frequency. J. Appl. Phys. 39, 70 (1968).

    CAS  Article  Google Scholar 

  10. 10.

    M.M. Kumar, A. Srinivas, and S.V. Suryanarayana: Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    H. Uchida, R. Yeno, H. Nakaki, H. Funakubo, and S. Koda: Ion modification for improvement of insulating and ferroelectric properties of BiFeO3 thin films fabricated by chemical solution deposition. Jpn. Appl. Phys. 44, L561 (2005).

  12. 12.

    Y-K. Jun, W-T. Moon, C-M. Chang, H-S. Kim, H.S. Ryu, J.W. Kim, K.H. Kim, and S-H. Hong: Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics. Solid State Commun. 135, 133 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    S.R. Das, P. Bhattacharya, R.N.P. Choudhary, and R.S. Katiyar: Effect of La substitution on structural and electrical properties of BiFeO3 thin film. J. Appl. Phys. 99, 066107 (2006).

    Article  Google Scholar 

  14. 14.

    S.K. Singh and H. Ishiwara: Reduced leakage current in BiFeO3 thin films on Si substrates formed by a chemical solution method. Jpn.J. Appl. Phys. 44, L734 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    C.F. Chung and J.M. Wu: Low leakage BiFeO3 thin films fabricated by chemical solution deposition. Electrochem. Solid State Lett. 8, F63 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    A.J. Jacobson and B.E.F. Fender: A neutron diffraction study of the nuclear and magnetic structure of BiFeO3. J. Phys. C: Solid State Phys. 8, 844 (1975).

    CAS  Article  Google Scholar 

  17. 17.

    T. Kanai, S-I. Ohkoshi, A. Nakajima, T. Watanabe, and K. Hashimoto: A ferroelectric ferromagnet composed of (PLZT)x(BiFeO3)1−x solid solution. Adv. Mater. 13, 487 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    S.A. Fedulov, P.B. Ladyzhinskii, I.L. Pyatigorskaya, and Y.N. Venevtsev: Complete phase diagram of the PbTiO3−BiFeO3 system. Sov. Phys. Solid State 6, 375 (1964).

    Google Scholar 

  19. 19.

    M.M. Kumar, S. Srinath, G.S. Kumar, and S.V. Suryanarayana: Spontaneous magnetic moment in BiFeO3−BaTiO3 solid solutions at low temperatures. J. Magn. Magn. Mater. 188, 203 (1998).

    Article  Google Scholar 

  20. 20.

    S. Vasudevan, C.N.R. Rao, A.M. Umarji, and G.V.S. Rao: Studies on BiCoO3 and BiCo1−xFexO3. Mater. Res. Bull. 14, 451 (1979).

    CAS  Article  Google Scholar 

  21. 21.

    I. Sosnowska, W. Schafer, and I.O. Troyanchuk: Investigations of crystal and magnetic structure of BiMn0.2Fe0.8O3. Physica B 276–278, 576 (2000).

    Article  Google Scholar 

  22. 22.

    K. Takahashi and M. Tonouchi: Influence of manganese doping in multiferroic bismuth ferrite thin films. J. Magn. Magn. Mater. 310, 1174 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    M. Azuma, H. Kanda, A.A. Belik, Y. Shimakawa, and M. Takano: Magnetic and structural properties of BiFe1−xMnxO3. J. Magn. Magn. Mater. 310, 1177 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    S-H. Hong, J.H. Horn, S. Trolier-McKinstry, and G.L. Messing: Dielectric and ferroelectric properties of Ta-doped bismuth titanates. J. Mater. Sci. Lett. 19, 1661 (2000).

    CAS  Article  Google Scholar 

  25. 25.

    J. Rodriguez-Carvajal, FullProf version 2005, IL, unpublished.

    Google Scholar 

  26. 26.

    I.H. Ismailzade and R.G. Yakupov: Magnetoelectric study of spin flop in ferroelectric–antimagnetic BiFeO3. Phys. Status Solidi A 32, K161 (1975).

    CAS  Article  Google Scholar 

  27. 27.

    M.M. Kumar, A. Srinivas, S.V. Suryanarayana, and T. Bhimasankaram: Dielectric and impedance studies on BiFeO3−BaTiO3 solid solutions. Phys. Status Solidi A 165, 317 (1998).

    CAS  Article  Google Scholar 

  28. 28.

    S.B. Lee, J-H. Lee, P-S. Cho, D-Y. Kim, W. Sigle, and F. Phillipp: High-temperature resistance anomaly at a strontium titanate grain boundary and its correlation with the grain-boundary faceting–defaceting transition. Adv. Mater. 19, 391 (2007).

    CAS  Article  Google Scholar 

  29. 29.

    M.M. Kumar, V.R. Palkar, K. Srinivas, and S.V. Suryanarayana: Ferroelectricity in a pure BiFeO3 ceramics. Appl. Phys. Lett. 76, 2764 (2000).

    CAS  Article  Google Scholar 

  30. 30.

    K. Ueda, H. Tabata, and T. Kawai: Coexistence of ferroelectricity and ferromagnetism in BiFeO3−BaTiO3 thin films at room temperature. Appl. Phys. Lett. 75, 555 (1999).

    CAS  Article  Google Scholar 

  31. 31.

    T. Kanai, S-I. Ohkoshi, and K. Hashimoto: Magnetic, electric, and optical functionalities of (PLZT)x(BiFeO3)1−x ferroelectric–ferromagnetic thin films. J. Phys. Chem. Solids 64, 391 (2003).

    CAS  Article  Google Scholar 

  32. 32.

    JCPDS No. 86–1518. International Center for Diffraction Data: Newton Square, PA, 1997.

    Google Scholar 

  33. 33.

    R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).

    Article  Google Scholar 

  34. 34.

    A. Reyes, C. de la Vega, M.E. Fuentes, and L. Fuentes: BiFeO3: Synchrotron radiation structure refinement and magnetoelectric geometry. J. Eur. Ceram. Soc. 27, 3709 (2007).

    CAS  Article  Google Scholar 

  35. 35.

    D. Lee, M.G. Kim, S. Ryu, and H.M. Jang: Epitaxially grown La-modified BiFeO3 magnetoelectric thin films. Appl. Phys. Lett. 86, 222903 (2005).

    Article  Google Scholar 

  36. 36.

    T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura: Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67, 180401 (2003).

    Article  Google Scholar 

  37. 37.

    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura: Magnetic control of ferroelectric polarization. Nature 426, 55 (2003).

    CAS  Article  Google Scholar 

Download references


This work was supported by the NANO Systems Institute-National Core Research Center (NSI-NCRC) program of Korea Science and Engineering Foundation (KOSEF), Korea. K.H. Kim was supported by the National Research Laboratory (NRL) program (M10600000238) of the Korean Ministry of Science and Technology.

Author information



Corresponding author

Correspondence to Seong-Hyeon Hong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jun, YK., Lee, S.B., Kim, M. et al. Dielectric and magnetic properties in Ta-substituted BiFeO3 ceramics. Journal of Materials Research 22, 3397–3403 (2007). https://doi.org/10.1557/JMR.2007.0421

Download citation