Size stabilization of nanoparticles by polysaccharides: Effectiveness in the wet and curing steps

Abstract

Starch suspension proves to be a useful matrix for the hydrolytic route to metal oxide nanoparticles, due to its size-stabilization effect, which works also at high temperatures. To understand the type of interaction between the organic part and the oxide particles, various parameters, such as viscosity, temperature, degree of polymerization, and organic/inorganic kinds of dispersant, are tested through x-ray diffraction (XRD), transmission electron microscopy (TEM), solid-state nuclear magnetic resonance (NMR), and thermogravimetric mass spectra (TG–MS) analyses of the obtained SnO2 nanopowders. Results highlight the unique role of starch compared with other hydrophilic dispersants that do not ensure effective size stabilization on curing up to 600 °C. The proof comes from the study of pyrolysis of the residual organic groups surrounding the particles. They are chelating carboxylic species that prevent the coalescence among metal oxide nanoparticles.

This is a preview of subscription content, access via your institution.

FIG. 1
TABLE I
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

References

  1. 1.

    X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A.P. Alivisatos: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Sun and Y. Xia: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    X. Peng: Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 15(5), 459 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    J. Liu, Y.L. Lam, Y.C. Chan, Y. Zhou, B.S. Ooi, and Z.S. Yun: Experimental and theoretical study of the cracking behavior of sol-gel-derived SiO2 film on InP substrate. J. Appl. Phys. A: Mater. Sci. Process. 70(3), 341 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    X-C. Yuan, W.X. Yu, N.Q. Ngo, and W.C. Cheong: Improved sol-gel thin film for fabrication of multilevel structures using a high-energy beam-sensitive gray-scale mask. Opt. Eng. 42(2), 302 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    W.X. Yu and X-C. Yuan: Fabrication of refractive microlens in hybrid SiO2/TiO2 sol-gel glass by electron-beam lithography. Opt. Express 11(8), 899 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    C. Sakurai, T. Fukui, and M. Okuyama: Preparation of zirconia coatings by hydrolysis of zirconium alkoxide with hydrogen peroxide. J. Am. Ceram. Soc. 76(4), 1061 (1993).

    CAS  Article  Google Scholar 

  8. 8.

    H. Kozuka and M. Hirano: Radiative striations and surface roughness of alkoxide-derived spin coating films. J. Sol.-Gel Sci. Technol. 19(1), 501 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Ohya, H. Saiki, and Y. Takahashi: Preparation of transparent, electrically conducting ZnO film from zinc acetate and alkoxide. J. Mater. Sci. 29(15), 4099 (1994).

    CAS  Article  Google Scholar 

  10. 10.

    Q. Ji and T. Shimizu: Chemical synthesis of transition metal oxide nanotubes in water using an iced lipid nanotube as a template. Chem. Commun. 4411 (2005).

    Google Scholar 

  11. 11.

    T. Miyao, T. Saika, Y. Saito, and S. Naito: Preparation of alumina and silica–alumina nanotubes encapsulating platinum ultrafine particles. J. Mater. Sci. Lett. 22(7), 543 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    S. Dirè, E. Pagani, F. Babonneau, R. Ceccato, and G. Carturan: Unsupported SiO2-based organic–inorganic membrane. Part 1. Synthesis and structural characterization. J. Mater. Chem. 7(1), 67 (1997).

    Article  Google Scholar 

  13. 13.

    C.J. Brinker and G.W. Scherer: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. (Academic Press, San Diego, CA, 1990).

    Google Scholar 

  14. 14.

    C.J. Brinker, A.J. Hurd, P-R. Schunk, and C.S. Ashley: Review of sol-gel thin film formation. J. Non-Cryst. Solids 147 & 148, 424 (1992).

    Article  Google Scholar 

  15. 15.

    S. Ramesh, E. Sominska, B. Cina, R. Chaim, and A. Gedanken: Nanocrystalline _-alumina synthesized by sonohydrolysis of alkoxide precursor in the presence of organic acids: Structure and morphological properties. J. Am. Ceram. Soc. 83(1), 89 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    D. Li and R.B. Kaner: Shape and aggregation control of nanoparticles: Not shaken, not stirred. J. Am. Chem. Soc. 128, 968 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15(5), 353 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    R.J. Hunter: Foundation of Colloidal Science. 1 (Oxford University Press, New York, 1987).

  19. 19.

    E. Callone, G. Carturan, and A. Sicurelli: Nanopowders of metallic oxides by the hydrolytic route with starch stabilization and biological abetment. J. Nanosci. Nanotech. 6(1), 254 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    E. Callone, G. Carturan, M. Ischia, and A. Sicurelli: Nanometric oxides from molecular precursors in the presence of starch. Coatings of glass with these oxides in silica sols. J. Mater. Res. 21(7), 1726 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    C. Canevali, N. Chiodini, F. Morazzoni, J. Padovani, A. Paleari, R. Scotti, and G. Spinolo: Substitutional tin doped silica glasses: An infrared study of the sol-gel transition. J. Non-Cryst. Solids 293–295, 32 (2001).

    Article  Google Scholar 

  22. 22.

    M. Acciarri, C. Canevali, C.M. Mari, M. Mattoni, R. Ruffo, R. Scotti, F. Morazzoni, D. Barreca, L. Armelao, E. Tondello, E. Bontempi, and L.E. Depero: Nanocrystalline SnO2-based thin films obtained by sol-gel route: A morphological and structural investigation. Chem. Mater. 15, 2646 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    R. Dal Maschio, S. Dirè, G. Carturan, S. Enzo, and L. Battezzati: Phase separation in gel-derived materials, separation and crystallization of SnO2 within an amorphous SiO2 matrix. J. Mater. Res. 7(2), 435 (1992).

    CAS  Article  Google Scholar 

  24. 24.

    L. Lutterotti, S. Matthies, and H.R. Wenk: Proc. 12th International Conference on Textures of Materials (ICOTOM-12), 1999, p. 1599.

    Google Scholar 

  25. 25.

    R. Campostrini, G.D. Sorarù, R. Ceccato, G. Carturan, and G. Dandrea: Pyrolysis study of methyl-substituted Si–H containing gels as precursors for oxycarbide glasses, by combined thermogravimetry, gas chromatographic and mass spectrometric analysis. J. Mater. Chem. 6, 585 (1996).

    CAS  Article  Google Scholar 

  26. 26.

    M.A. Rao, M.J. Cooley, and A.A. Vitali: Flow properties of concentrated juices at low temperatures. Food Technol. 38, 113 (1984).

    Google Scholar 

  27. 27.

    J.Y. Thebaudin, A.C. Lefebvre, and J.L. Doublier: Rheology of starch pastes from starches of different origins: Application to starchbased sauces. Lebensm.-Wiss.U. Technol. 31(4), 354 (1998).

    CAS  Article  Google Scholar 

  28. 28.

    D.P. Tunstall, S. Patou, R.S. Liu, and Y.H. Kao: Size effects in the NMR of SnO2 powders. Mater. Res. Bull. 34, 1513 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    D.C. Dragunski and A. Pawlicka: Preparation and characterization of starch grafted with toluene and polypropylene oxide diisocyanate. Mater. Res. 4(2), 77 (2001).

    CAS  Article  Google Scholar 

  30. 30.

    M.P. Williamson, C. Trevitt, and J.M. Noble: NMR studies of dextran oligomer interactions with model polyphenols. Carbohydr. Res. 266(2), 229 (1995).

    CAS  Article  Google Scholar 

  31. 31.

    R.E. Dinnebier, S. Vensky, M. Jansen, and J.C. Hanson: Crystal structures and topological aspects of the high-temperature phases and decomposition products of the alkali metal oxalates M2[C2O4] (M = K, Rb,Cs). Chem. Eur.J. 11, 1119 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    M.A. Mohamed, A.K. Galwey, and S.A. Halawy: A comparative study of the thermal reactivities of some transition metal oxides in selected atmospheres. Thermochim. Acta 429, 57 (2005).

    CAS  Article  Google Scholar 

  33. 33.

    R.L. Frost and M.L. Weier: Thermal decomposition of humboldtine— a high resolution thermogravimetric and hot stage Raman spectroscopic study. J. Therm. Anal. Calorim. 75, 277 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    E.J. Hehre: The biological synthesis of dextran from dextrins. J. Biol. Chem. 192, 162 (1951).

    Article  Google Scholar 

  35. 35.

    M.A. Larrubia Vargas, G. Busca, T. Montanari, M.C. Herrera Delgado, and L.J. Alemany: Preparation and characterization of silicon hydride oxide: A fully hydrophobic solid. J. Mater. Chem. 15, 910 (2005).

    Article  Google Scholar 

  36. 36.

    N. Chiodini, F. Morazzoni, A. Paleari, R. Scotti, and G. Spinolo: Sol-gel synthesis of monolithic tin-doped silica glass. J. Mater. Chem. 9, 2653 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank both Ministero per l’Universita e la Ricerca Scientifica e Tecnologica-Progetti Nazionali di Ricerca (MURST-PNR) 2001-2003 (FIRB art. 8) and “Provincia Autonoma di Trento” for funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emanuela Callone.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Callone, E., Carturan, G., Ischia, M. et al. Size stabilization of nanoparticles by polysaccharides: Effectiveness in the wet and curing steps. Journal of Materials Research 22, 3344–3354 (2007). https://doi.org/10.1557/JMR.2007.0416

Download citation