Advances in SiGeSn technology

Abstract

We recently reported the chemical vapor deposition growth of binary Ge1–ySny and ternary Ge1–ySixSny alloys directly on Si wafers using SnD4, Ge2H6 (di-germane), SiH3GeH3, and (GeH3)2SiH2 sources. Ge1–ySny is an intriguing infrared (IR) material that undergoes an indirect-to-direct band-gap transition for y < 0.1. In addition, we have found that Ge1–ySny layers have ideal properties as templates for the subsequent deposition of other semiconductors: (i) they are strain-relaxed and have low threading-defect densities (105 cm−2) even for films thinner than 1 μm; (ii) their low growth temperatures between 250 and 350 °C are compatible with selective growth, and the films possess the necessary thermal stability for conventional semiconductor processing (up to 750 °C, depending on composition); (iii) they exhibit tunable lattice constants between 5.65 Å and at least 5.8 Å, matching InGaAs and related III-V systems; (iv) their surfaces are extremely flat; (v) they grow selectively on Si and not on SiO2; and (vi) the film surface can be prepared by simple chemical cleaning for subsequent ex situ epitaxy. The incorporation of Sn lowers the absorption edges of Ge. Therefore, Ge1–ySny is attractive for detector and photovoltaic applications that require band gaps lower than that of Ge. Spectroscopic ellipsometry and photoreflectance experiments show that the direct band gap is halved for as little as y = 0.15. Studies of a Ge0.98Sn0.02 sample yield an absorption coefficient of 3500 cm−1 at 1675 nm (0.74 eV). Thus, IR detectors based on Ge0.98Sn0.02 could easily cover the L-(1565–1625 nm) and C-(1530–1565 nm) telecomm bands. Photoluminescence studies show band-gap emission on thin GeSn layers sandwiched between higher band-gap SiGeSn barriers. We have made advances in p- and n-doping of GeSn and present results on electrical characterizations. Hall measurements reveal mobilities as high as of 600 cm2/V-s and background p-dopant concentrations in the 1016 cm−3 range for samples with nominal composition and thickness of Ge0.98Sn0.02 and ∼500 nm, respectively. GeSn also has application in band-to-band laser heterodiodes. The ternary system Ge1–x–ySixSny grows on Ge1–ySny-buffered Si. It represents the first practical group IV ternary alloy, because C can only be incorporated in minute amounts to the Ge–Si network. The most significant feature of Ge1–x–ySixSny is the possibility of independent adjustment of the lattice constant and band gap. For the same value of the lattice constant, one can obtain band gaps differing by >0.2 eV, even if the Sn concentration is limited to the range y < 0.2. This property can be used to develop a variety of novel devices, from multicolor detectors to multiple-junction photovoltaic cells. A linear interpolation of band-gap lattice constants between Si, Ge, and α–Sn shows that it is possible to obtain SiGeSn with a band gap and a lattice constant larger than that of Ge. We shall use this feature to make a tensile-strained Ge-on-SiGeSn telecomm detector with improved performance. To date, record high tensile strain (0.40%) has been achieved in Ge layers grown on GeSn-buffered Si where the strain is systematically tuned by adjusting the lattice constant in the buffer. A tensile-strain-induced direct gap of Ge can be used also for laser diodes and electroptical modulators.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

References

  1. 1.

    M.R. Bauer, J. Taraci, J. Tolle, A.V.G. Chizmeshya, S. Zollner, J. Menendez, D.J. Smith, and J. Kouvetakis: Ge-Sn semiconductors for band gap and lattice engineering. Appl. Phys. Lett. 81, 2992 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    J. Kouvetakis, J. Menendez, and A.V.G. Chizmeshya: Tin-based group IV semiconductors: New platforms for opto- and microelectronics on silicon. Annu. Rev. Mater. Res. 36, 497 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    R. Roucka, J. Tolle, C. Cook, V.J. Costa, A.V.G. Chizmeshya, J. Menendez, S. Zollner, and J. Kouvetakis: Versatile buffer layer architectures based on Ge1–xSnx alloys. Appl. Phys. Lett. 86, 191912 (2005).

    Article  Google Scholar 

  4. 4.

    M.R. Bauer, J. Kouvetakis, D.J. Smith, and J. Menendez: Tunable band structure in diamond-cubic tin-germanium alloys grown on silicon substrates. Solid State Commun. 127, 355 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    V. D’Costa, C. Cook, A.G. Birdwell, C.A. Littler, S. Zollne, J. Kouvetakis, and J. Menendez: Optical critical points of thinfilm Ge1–ySny alloys: A comparative Ge1–ySny/Ge1–xSix study. Phys. Rev. B: Solid State 73, 125207 (2006).

    Article  Google Scholar 

  6. 6.

    A.V.G. Chizmeshya, C. Ritter, J. Tolle, C. Cook, J. Menendez, and J. Kouvetakis: Fundamental studies of P(GeH3)3, As(GeH3)3, and Sb(GeH3)3: Practical n-dopants for new group IV semiconductors. Chem. Mater. 18, 6266 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    P. Aella, C. Cook, J. Tolle, S. Zollner, A.V.G. Chizmeshya, and J. Kouvetakis: Optical and structural properties of SixSnyGe1–x–y alloys. Appl. Phys. Lett. 84, 888 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    J. Tolle, R. Roucka, V. D’Costa, J. Menendez, A. Chizmeshya, and J. Kouvetakis: Compliant tin-based buffers for the growth of defect-free strained heterostructures on silicon. Appl. Phys. Lett. 88(25), 252112 (2006).

    Article  Google Scholar 

  9. 9.

    J. Menendez, V.R. D’Costa, S.C. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, and S. Zollner: Transferability of optical bowing parameters between binary and ternary group-IV alloys. Solid State Commun. 138(6), 309 (2006).

    Article  Google Scholar 

  10. 10.

    Y. Ishikawa, K. Wada, D.D. Cannon, J. Liu, H-C. Luan, and L.C. Kimerling: Strain-induced band gap shrinkage in Ge grown on Si substrates. Appl. Phys. Lett. 82, 2044 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    J. Menendez and J. Kouvetakis: Type-I Ge/Ge1–xySixSny strainedlayer heterostructures with a direct Ge bandgap. Appl. Phys. Lett. 85(7), 1175 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    Y-Y. Fang, J. Tolle, V. D’Costa, J. Menendez, and J. Kouvetakis: Perfectly tetragonal tensile-strained Ge on Ge1–ySny buffered Si(100). Appl. Phys. Lett. 90, 061915 (2007).

    Article  Google Scholar 

  13. 13.

    R.A. Soref and L. Friedman: Direct gap Ge/GeSn/Si heterostructures. Superlattices Microstruct. 14(213), 189 (1993).

    CAS  Article  Google Scholar 

  14. 14.

    R.A. Soref, J. Kouvetakis, and J. Menendez: Strain-engineered direct-gap Ge/SnxGe1−x heterodiode and multi-quantum-well photodetectors, laser, emitters and modulators grown on SnySizGe1–y–z-buffered silicon, U.S. Patent No. 6 897 471 (2005).

    Google Scholar 

  15. 15.

    J. Tolle, V. D’Costa, A.V.G. Chizmeshya, C-W. Hu, I.S.T. Tsong, J. Menendez, and J. Kouvetakis: Low temperature chemical vapor deposition of Si-based compounds via SiH3SiH2SiH3: Metastable SiSn/GeSn/Si(100) heteroepitaxial structures. Appl. Phys. Lett. 89, 231924 (2006).

    Article  Google Scholar 

  16. 16.

    R. Roucka, J. Tolle, V. D’Costa, J. Menendez, and J. Kouvetakis: Ge1−ySny/Si(100) composite substrates for growth of InxGa1−xAs and GaAs1−xSbx alloys. J. Appl. Phys. 101, 013518 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Air Force Office of Scientific Research (Dr. Gernot Pomrenke, Program Manager) for sponsorship of this research with Grant AFOSR MURI, FA9550-06-01-0442. The XRD equipment used in this study was purchased by a grant from the National Science Foundation (DMR-0526604).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard Soref.

Additional information

Papers in this section are based on submissions to the MRS Symposium Proceedings that were selected by Symposium Organizers as the outstanding paper. Upon selection, authors are invited to submit their research results to Journal of Materials Research. These papers are subject to the same peer review and editorial standards as all other JMR papers. This is another way by which the Materials Research Society recognizes high quality papers presented at its meetings.

This paper was selected as the Outstanding Meeting Paper for the 2006 MRS Fall Meeting Symposium L Proceedings, Vol. 958.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Soref, R., Kouvetakis, J., Tolle, J. et al. Advances in SiGeSn technology. Journal of Materials Research 22, 3281–3291 (2007). https://doi.org/10.1557/JMR.2007.0415

Download citation