Surface nanodeformation of discontinuously reinforced Ti composite by in situ atomic force microscope observation

Abstract

The surface nanodeformation of a discontinuously reinforced Ti–6Al–4V composite during tensile loading was investigated by in situ atomic force microscope (AFM) observation. The material used was a TiB whisker and TiC particle reinforced Ti–6Al–4V composite. The evolution of surface roughness and slip band spacing was quantified as a function of applied strain. The microstructural damage during tensile loading was also studied. The formation of slip bands within a grain of the Ti–6Al–4V matrix was clearly observed when the applied strain above was 1.3%. The amount of slip bands and surface roughness increase with increasing applied strain. The rupture of TiC particle and multiple cracking of TiB whiskers were also observed at the applied strain above 1.3%. The interaction of slip bands with the reinforcements and mechanisms of deformation and fracture of the composite were elucidated.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

References

  1. 1

    K.S. Ravi Chandran, K.B. Panda S.S. Sahay: TiBw-reinforced Ti composites: Processing, properties, application prospects, and research needs. JOM 56(5), 42 2004

    CAS  Article  Google Scholar 

  2. 2

    T. Saito: Automotive application of discontinuously reinforced TiB–Ti composites. JOM 56(5), 33 2004

    CAS  Article  Google Scholar 

  3. 3

    C.F. Yolton: The pre-alloyed powder metallurgy of titanium with boron and carbon additions. JOM 56(5), 56 2004

    CAS  Article  Google Scholar 

  4. 4

    S. Gorsse D.B. Miracle: Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater. 51, 2427 2003

    CAS  Article  Google Scholar 

  5. 5

    W.O. Soboyejo, W. Shen T.S. Srivatsan: An investigation of fatigue crack nucleation and growth in a Ti–6Al–4V/TiB in situ composite. Mech. Mater. 36, 141 2004

    Article  Google Scholar 

  6. 6

    Z.Y. Ma, S.C. Tjong X.M. Meng: Creep behavior of in situ dual-scale particles—TiB whisker and TiC particulate-reinforced titanium composites. J. Mater. Res. 17, 2307 2002

    CAS  Article  Google Scholar 

  7. 7

    L. Allais, M. Bornert, T. Bretheau D. Caldemaison: Experimental characterization of the local strain field in a heterogeneous elastoplastic material. Acta Metall. Mater. 42, 3865 1994

    CAS  Article  Google Scholar 

  8. 8

    H.A. Crostack, G. Fischer, E. Soppa, S. Schmauder Y.L. Liu: Localization of strain in metal matrix composites studied by scanning electron microscope-based grating method. J. Microsc. 201, 171 2001

    CAS  Article  Google Scholar 

  9. 9

    M.Y. Zheng, W.C. Zhang, K. Wu C.K. Yao: The deformation and fracture behavior of SiCw/AZ91 magnesium matrix composite during in-situ TEM straining. J. Mater. Sci. 38, 2647 2003

    CAS  Article  Google Scholar 

  10. 10

    J.Y. Buffiere, E. Maire, P. Cloetens, G. Lormand R. Fougeres: Characterization of internal damage in a MMCp using x-ray synchrotron phase contrast microtomography. Acta Mater. 47, 1613 1999

    CAS  Article  Google Scholar 

  11. 11

    P.B. Prangnell, T. Downes, P.J. Withers W.M. Stobbs: The deformation of discontinuously reinforced MMCs-I. The initial yielding behavior. Acta Metal. Mater. 42, 3437 1994

    CAS  Article  Google Scholar 

  12. 12

    J. Llorca C. Gonzalez: Microstructural factors controlling the strength and ductility of particle-reinforced metal-matrix composites. J. Mech. Phys. Solids 46, 1 1998

    CAS  Article  Google Scholar 

  13. 13

    W. Tong, L.G. Hector, H. Weiland L.F. Wieserman: In-situ surface characterization of a binary aluminum alloy during tensile deformation. Scripta Mater. 36, 1339 1997

    CAS  Article  Google Scholar 

  14. 14

    S.E. Harvey, P.G. Marsh W.W. Gerberich: Atomic force microscopy and modeling of fatigue crack initiation in metals. Acta Metall. Mater. 42, 3493 1994

    CAS  Article  Google Scholar 

  15. 15

    W.W. Gerberich, S.E. Harvey J.W. Hoehn: Low and high cycle fatigue—a continuum supported by AFM observations. Acta Mater. 46, 5007 1998

    CAS  Article  Google Scholar 

  16. 16

    L. Cretegny A. Saxena: AFM characterization of the evolution of surface deformation during fatigue in polycrystalline copper. Acta Mater. 49, 3755 2001

    CAS  Article  Google Scholar 

  17. 17

    A. Ambard, L. Guetaz, F. Louchet D. Guichard: Role of interphases in the deformation mechanisms of an α/β titanium alloy at 20K. Mater. Sci. Eng., A 319–321, 404 2001

    Article  Google Scholar 

  18. 18

    D. Chandrasekaran M. Nygards: A study of the surface deformation behavior at grain boundaries in an ultra-low-carbon steel. Acta Mater. 51, 5373 2003

    Article  Google Scholar 

  19. 19

    Y. Tanaka, J.M. Yang, Y.F. Liu Y. Kagawa: Characterization of nanoscale deformation in a discontinuously reinforced titanium composite using AFM and nanolithography. Scripta Mater. 56, 209 2007

    CAS  Article  Google Scholar 

  20. 20

    A.J.W. Johnson, C.W. Bull, K.S. Kumar C.L. Briant: The influence of microstructure and strain rate on the compressive deformation behavior of Ti–6Al–4V. Metall. Mater. Trans. A 34, 295 2003

    Article  Google Scholar 

  21. 21

    V. Tvergaard: Breakage and debonding of short brittle fibres among particulates in a metal matrix. Mater Sci. Eng., A 396, 192 2004

    Article  Google Scholar 

  22. 22

    C.F. Niordson: Strain gradient plasticity effects in whisker-reinforced metals. J. Mech. Phys. Solids 51, 1863 2003

    Article  Google Scholar 

  23. 23

    Y-H. Kim, S. Lee N.J. Kim: Fracture mechanisms of a 2124 aluminum matrix composite reinforced with SiC whiskers. Metall. Trans. A23, 2589 1992

    Article  Google Scholar 

  24. 24

    D. Khireddine, R. Rahouadj M. Clavel: Irreversibility of strain during low-cycle fatigue experiments of a precipitation-hardened alloy. Philos. Mag. A 77, 1555 1998

    CAS  Article  Google Scholar 

  25. 25

    M. Graf E. Hornbogen: The effect of inhomogeneity of cyclic strain on initiation of cracks. Scripta Metal. 12, 147 1978

    Article  Google Scholar 

  26. 26

    J. Aveston A. Kelly: Theory of multiple fracture of fibrous composites. J. Mat. Sci. 8, 352 1973

    CAS  Article  Google Scholar 

  27. 27

    V. Tvergaard: Debonding of short fibres among particulates in a metal matrix composite. Int. J. Solids Structures 40, 6957 2003

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Institute of Materials Science. We also thank C.F. Yolton at Crucible Research for providing the discontinuously reinforced Ti–6Al–4V composite.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Tanaka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tanaka, Y., Yang, JM., Liu, Y. et al. Surface nanodeformation of discontinuously reinforced Ti composite by in situ atomic force microscope observation. Journal of Materials Research 22, 3098–3106 (2007). https://doi.org/10.1557/JMR.2007.0383

Download citation