Origin of the plasticity in bulk amorphous alloys


Unlike the dislocation-based plasticity in crystalline metals, which can be readily explained by their crystal structure and the presence of defects, the nature of the plasticity in amorphous alloys is not completely understood. Experiments have shown that the plasticity in amorphous alloys is strongly dependent on their atomic packing density. This study, based on the combination of experimental and computational techniques, examines the origin of the plasticity in amorphous alloys considering characteristics of the inherent atomic-scale structure as defined by short-range ordered (SRO) clusters. The role of various SRO atomic clusters in creating free volume during shear deformation is discussed. We report that the plasticity exhibited by amorphous alloys is very sensitive to the characteristics of the atomic packing state, which can be described by various SRO atomic structures and quantified by the effective activation energy for crystallization.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10


  1. 1

    D.B. Miracle: Structural model for metallic glasses. Nat. Mater. 3, 697 2004

    CAS  Article  Google Scholar 

  2. 2

    H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai E. Ma: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 2006

    CAS  Article  Google Scholar 

  3. 3

    D.B. Miracle: The efficient cluster packing model—An atomic structural model for metallic glasses. Acta Mater. 54, 4317 2006

    CAS  Article  Google Scholar 

  4. 4

    I. Kaban, T.H. Halm, W. Hoyer, P. Jovari J. Neuefeind: Short-range order in amorphous germanium-tellurium alloys. J. Non-Cryst. Solids 326, 120 2003

    Article  CAS  Google Scholar 

  5. 5

    F. Spaepen: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Mater. 25, 407 1977

    CAS  Article  Google Scholar 

  6. 6

    A.S. Argon H.Y. Kuo: Free energy spectra for inelastic deformation of five metallic glass alloys. J. Non-Cryst. Solids 37, 241 1980

    CAS  Article  Google Scholar 

  7. 7

    J.S. Park, H.K. Lim, J.H. Kim, H.J. Chang, W.T. Kim D.H. Kim: In-situ crystallization and enhanced mechanical properties of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy by cold rolling. J. Non-Cryst. Solids 51, 2142 2005

    Article  CAS  Google Scholar 

  8. 8

    Y. Yokoyama: Ductility improvement of Zr–Cu–Ni–Al glassy alloy. J. Non-Cryst. Solids 316, 104 2003

    CAS  Article  Google Scholar 

  9. 9

    Q.P. Cao, J.F. Li, Y.H. Zhou, A. Horsewell J.Z. Jiang: Effect of rolling deformation on the microstructure of bulk Cu60Zr20Ti20 metallic glass and its crystallization. Acta Mater. 54, 4373 2006

    CAS  Article  Google Scholar 

  10. 10

    T. Egami, K. Maeda V. Vitek: Structural defects in amorphous solids: A computer simulation. Philos. Mag. A 41, 883 1980

    CAS  Article  Google Scholar 

  11. 11

    R. Raghavan, P. Murali U. Ramamurty: Ductile to brittle transition in the Zr41.2Ti13.75Cu12.5Ni10Be22.5 bulk metallic glass. Intermetallics 14, 1051 2006

    CAS  Article  Google Scholar 

  12. 12

    D. Suh R.H. Dauskardt: Effects of open-volume regions on relaxation time scales and fracture behavior of a Zr–Ti–Ni–Cu–Be bulk metallic glass. J. Non-Cryst. Solids 317, 181 2003

    CAS  Article  Google Scholar 

  13. 13

    J.J. Lewandowski, M. Shazly N.A. Shamimi: Intrinsic and extrinsic toughening of metallic glasses. Scripta Mater. 54, 337 2006

    CAS  Article  Google Scholar 

  14. 14

    Y.J. Huang, J. Shen J.F. Sun: Bulk metallic glasses: Smaller is softer. Appl. Phys. Lett. 90, 081919 2007

    Article  CAS  Google Scholar 

  15. 15

    D. Deng, A.S. Argon S. Yip: Kinetics of structural relaxations in a two-dimensional model atomic glass. 3. Philos. Trans. R. Soc. London, Ser. A 329, 595 1989

    CAS  Article  Google Scholar 

  16. 16

    D. Deng, A.S. Argon S. Yip: Simulation of plastic deformation in a two-dimensional atomic glass by molecular dynamics. 4. Philos. Trans. R. Soc. London, Ser. A 329, 613 1989

    CAS  Article  Google Scholar 

  17. 17

    M. Wakeda, Y. Shibutani, S. Ogata J. Park: Relationship between geometrical factors and mechanical properties for Cu–Zr amorphous alloys. Intemetallics 15, 139 2007

    CAS  Article  Google Scholar 

  18. 18

    D. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson C. Garland: Bulk metallic glass formation in binary Cu-rich alloy series-Cu100−XZrX (X = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 2004

    CAS  Article  Google Scholar 

  19. 19

    D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu E. Ma: Bulk metallic glass formation in the binary Cu–Zr system. Appl. Phys. Lett. 84, 4029 2004

    CAS  Article  Google Scholar 

  20. 20

    O.J. Kwon, Y.C. Kim, Y.K. Lee E. Fleury: Formation of amorphous phase in the binary Cu–Zr alloy system. Met. Mater. Int. 12, 207 2006

    CAS  Article  Google Scholar 

  21. 21

    O.J. Kwon, Y.K. Lee, S.O. Park, J.C. Lee, Y.C. Kim E. Fleury: Thermal and mechanical behaviors of Cu–Zr amorphous alloys. Mater. Sci. Eng., A 449, 169 2007

    Article  CAS  Google Scholar 

  22. 22

    G. Duan, D. Xu W.L. Johnson: High copper content bulk glass formation in bimetallic Cu–Hf System. Mater. Trans. A 36A, 455 2005

    CAS  Article  Google Scholar 

  23. 23

    L. Xia, W.H. Li, S.S. Fang, B.C. Wei Y.D. Dong: Binary Ni–Nb bulk metallic glasses. J. Appl. Phys. 99, 026103 2006

    Article  CAS  Google Scholar 

  24. 24

    L. Xia, D. Ding, S.T. Shan Y.D. Dong: The glass forming ability of Cu-rich Cu–Hf binary alloys. J. Phys.: Condens. Matter 18, 3543 2006

    CAS  Google Scholar 

  25. 25

    A. Inoue A. Tackeuchi: Recent progress in bulk glass alloys. Mater. Trans., JIM 43, 1892 2002

    CAS  Article  Google Scholar 

  26. 26

    J.D. Bernal: Geometry of the structure of monatomic liquids. Nature 185, 68 1960

    Article  Google Scholar 

  27. 27

    J.D. Bernal: A geometrical approach to the structure of liquids. Nature 183, 141 1959

    CAS  Article  Google Scholar 

  28. 28

    G.E. Dieter Mechanical Metallurgy, 3rd ed. McGraw Hill New York 1986 22

    Google Scholar 

  29. 29

    S.W. Lee, M.Y. Huh, E. Fleury J.C. Lee: Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Mater. 54, 349 2006

    CAS  Article  Google Scholar 

  30. 30

    B.J. Lee, C.S. Lee J.C. Lee: Stress induced crystallization of amorphous materials and mechanical properties of nanocrystalline materials: A molecular dynamics simulation study. Acta Mater. 51, 6233 2003

    CAS  Article  Google Scholar 

  31. 31

    B.J. Lee, J.C. Lee, Y.C. Kim S.H. Lee: Behavior of amorphous materials under hydrostatic pressures: A molecular dynamics simulation study. Met. Mater. Int. 10, 467 2004

    CAS  Article  Google Scholar 

  32. 32

    A.S. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47 1979

    CAS  Article  Google Scholar 

  33. 33

    M.L. Falk J.S. Langer: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 1998

    CAS  Article  Google Scholar 

  34. 34

    F. Ye K. Lu: Pressure effect on crystallization kinetics of an Al–La–Ni amorphous alloy. Acta Mater. 47, 2449 1999

    CAS  Article  Google Scholar 

  35. 35

    S.W. Lee, M.Y. Huh, S.W. Chae J.C. Lee: Mechanism of the deformation-induced nanocrystallization in a Cu-based bulk amorphous alloy under uniaxial compression. Scripta Mater. 54, 1439 2006

    CAS  Article  Google Scholar 

  36. 36

    F. Ye K. Lu: Crystallization kinetics of amorphous solids under pressure. Phys. Rev. B 60, 7018 1999

    CAS  Article  Google Scholar 

  37. 37

    J.J. Kim, Y. Choi, S. Suresh A. Argon: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 2002

    CAS  Google Scholar 

  38. 38

    Y.X. Zhuang, J. Jiang, T.J. Zhou H.K. Rasmussen: Effect of pressure on crystallization of Al89La6Ni5 amorphous alloy. Appl. Phys. Lett. 77, 4133 2000

    CAS  Article  Google Scholar 

  39. 39

    H.E. Kissinger: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 1957

    CAS  Article  Google Scholar 

  40. 40

    H. Yinnon D.R. Uhlmann: Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids. J. Non-Cryst. Solids 54, 253 1983

    CAS  Article  Google Scholar 

  41. 41

    J.J. Lewandowski, W.H. Wang A.L. Greer: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 2005

    CAS  Article  Google Scholar 

  42. 42

    J. Schroers W.L. Johnson: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 2004

    Article  CAS  Google Scholar 

Download references


This study was supported by a grant (06K1501-01210) from Center for Nanostructured Materials Technology under 21st Century Frontier R&D Programs of the Ministry of Science and Technology, and the Basic Research Program (R01-2004-000-10891-0) of Korea Science and Engineering Foundation, Republic of Korea. The authors (M. Wakeda and Y. Shibutani) acknowledge the support from the Ministry of Education, Culture, Sports, Science and Technology of Japan, Grant-in-Aid for Scientific Research on Priority Areas (15074214).

Author information



Corresponding author

Correspondence to Jae-Chul Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, JC., Park, KW., Kim, KH. et al. Origin of the plasticity in bulk amorphous alloys. Journal of Materials Research 22, 3087–3097 (2007). https://doi.org/10.1557/JMR.2007.0382

Download citation