Competitions incorporated in rapid solidification of the bulk undercooled eutectic Ni78.6Si21.4 alloy


Adopting glass fluxing and cyclic superheating, high undercooling up to ∼550 K was achieved in bulk eutectic Ni78.6Si21.4 alloy melt. With increasing undercooling, the as-solidified microstructure shows an interesting evolution, i.e., regular lamellar eutectic, coarse directional dendrite, quasi-spherical dendritic colony, fine directional dendrite, fine quasi-spherical dendritic colony, and superfine anomalous eutectic. In combination with different theories for nucleation and growth, the microstructure evolution was analyzed and described using competitions incorporated in rapid solidification of the bulk undercooled eutectic Ni78.6Si21.4 alloy. For undercooling below and above 180 K, Ni3Si, and α-Ni are primarily solidified, respectively. This phase selection can be ascribed to competitive nucleation. As undercooling increases, a transition of the prevalent nucleation mode from site saturation to continuous nucleation was interpreted in terms of competition of nucleation mode. Accordingly, the superfine anomalous eutectic is obtained, due to the substantially increased continuous nucleation rate, i.e., grain refinement occurring at high undercooling (e.g., ∼550 K).

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1

    J. Lipton, W. Kurz R. Trivedi: Rapid dendrite growth in undercooled alloys. Acta Metall. 35, 957 1987

    CAS  Article  Google Scholar 

  2. 2

    J.D. Hunt K.A. Jackson: Nucleation of solid in an undercooled liquid by cavitation. J. Appl. Phys. 37, 254 1965

    Article  Google Scholar 

  3. 3

    K.A. Jackson J.D. Hunt: Lamellar and rod eutectic growth. Trans. AIME 236, 1129 1966

    CAS  Google Scholar 

  4. 4

    R. Trivedi, P. Magnin W. Kurz: Theory of eutectic growth under rapid solidification conditions. Acta Metall. 35, 971 1987

    CAS  Article  Google Scholar 

  5. 5

    K.A. Jackson, J.D. Hunt D.R. Uhlmann: On origin of equiaxed zone in casting. Trans. Met. Soc. AIME 236(2), 149 1966

    CAS  Google Scholar 

  6. 6

    T.Z. Kattamis M.C. Flemings: Dendrite structure and grain size of undercooled melts. Trans. Met. Soc. AIME 236, 1523 1966

    CAS  Google Scholar 

  7. 7

    G.L.F. Powell: The influence of oxygen content on the grain size of undercooled silver. Trans. Met. Soc. AIME 245, 1785 1969

    CAS  Google Scholar 

  8. 8

    F. Liu G.C. Yang: Stress-induced recrystallization mechanism fro grain refinement in highly undercooled superalloy. J. Cryst. Growth 231, 295 2001

    CAS  Article  Google Scholar 

  9. 9

    F. Liu, D.W. Zhao G.C. Yang: Solidification of undercooled molten Ni-based alloys. Metall. Mater. Trans. B 32(3), 449 2001

    Article  Google Scholar 

  10. 10

    F. Liu, X.F. Guo G.C. Yang: Structure evolution in undercooled DD3 single crystal superalloy. Mater. Sci. Eng., A 291(1–2), 9 2000

    Article  Google Scholar 

  11. 11

    W. Kurz D.J. Fisher: Solidification microstructures: Eutectics and peritectics in Fundamentals of Solidification edited by W. Kurz and D.J. Fisher Trans Tech Publications Ltd. Switzerland 1998 Chap. 5, p. 93

    Google Scholar 

  12. 12

    J.H. Perepezko: Kinetic processes in undercooled melts. Mater. Sci. Eng., A 226–228, 374 1997

    Article  Google Scholar 

  13. 13

    J.H. Perepezko: Nucleation-controlled reactions and metastable structures. Prog. Mater. Sci. 49, 263 2004

    CAS  Article  Google Scholar 

  14. 14

    R. Goetzinger, M. Barth D.M. Herlach: Growth of lamellar eutectic dendrites in undercooled melts. J. Appl. Phys. 84, 1643 1998

    CAS  Article  Google Scholar 

  15. 15

    R.F. Cochrane, A.L. Greer, K. Eckler D.M. Herlach: Dendrite growth velocities in undercooled Ni–Si alloys. Mater. Sci. Eng., A 133, 698 1991

    Article  Google Scholar 

  16. 16

    Y.P. Lu, G.C. Yang, C.L. Yang Y.H. Zhou: Directional solidification of highly undercooled eutectic Ni78.6Si21.4 alloy. Mater. Lett. 59, 1558 2005

    CAS  Article  Google Scholar 

  17. 17

    S. Milenkovic R. Caram: Effect of the growth parameters on the Ni–Ni3Si eutectic microstructure. J. Cryst. Growth 95, 237 2002

    Google Scholar 

  18. 18

    R. Goetzinger, M. Barth D.M. Herlach: Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni–Si, Co–Sb and Ni–Al–Ti alloys. Acta Mater. 46, 1647 1988

    Article  Google Scholar 

  19. 19

    M. Leonhardt, W. Löser H.G. Lindenkreuz: Metastable phase formation in undercooled eutectic Ni78.6Si21.4 melts. Mater. Sci. Eng., A 271, 31 1999

    Article  Google Scholar 

  20. 20

    T.Z. Kattamis M.C. Flemings: Structure of undercooled Ni–Sn eutectic. Metall. Trans. 1, 1449 1970

    CAS  Article  Google Scholar 

  21. 21

    B.L. Jones: Growth mechanisms in undercooled eutectics. Metall. Trans. 2, 2950 1971

    CAS  Article  Google Scholar 

  22. 22

    B. Wei, D.M. Herlach, B. Feuerbacher F. Sommer Dendritic and eutectic solidification of undercooled Co–Sb alloys. Acta Metall., 41, 1801 (1993)

    CAS  Article  Google Scholar 

  23. 23

    B. Wei D.M. Herlach Dendrite growth in undercooled monotectic alloys, (Advanced Materials’ 93), Trans. Mater. Res. Soc. Jpn., 14A, 639 (1994)

    CAS  Google Scholar 

  24. 24

    P. Nash A. Nash: Phase Diagrams of Binary Nickel Alloy ASM International Materials Park, OH 1991 22

    Google Scholar 

  25. 25

    J.W. Christian: The classical theory of nucleation in The Theory of Transformation in Metals and Alloys edited by J.W. Christian Pergamon Press Oxford, England 1975 Chap. 10, p. 418

    Google Scholar 

  26. 26

    D. Turnbull: Kinetics of solidification of supercooled liquid mercury droplets. J. Chem. Phys. 20, 411 1952

    CAS  Article  Google Scholar 

  27. 27

    G.R. Wood A.G. Waltons: Homogeneous nucleation kinetics of ice from water. J. Appl. Phys. 41, 3027 1970

    CAS  Article  Google Scholar 

  28. 28

    E.J. Mittemeijer F. Sommer: Solid-state phase transformation kinetics: A modular transformation model. Z. Metallkd. 93, 5 2002

    Article  Google Scholar 

  29. 29

    F. Liu, F. Sommer E.J. Mittemeijer: An analytical model for isothermal and isochronal transformation kinetics. J. Mater. Sci. 39, 1621 2004

    CAS  Article  Google Scholar 

  30. 30

    E.J. Mittemeijer: Analysis of the kinetics of phase transformations. J. Mater. Sci. 27, 3977 1992

    CAS  Article  Google Scholar 

  31. 31

    F. Liu, F. Sommer E.J. Mittemeijer: Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; application to calorimetric data. Acta Mater. 52, 3207 2004

    CAS  Article  Google Scholar 

  32. 32

    A.T.W. Kempen, F. Sommer E.J. Mittemeijer: The isothermal and isochronal kinetics of the crystallisation of bulk amorphous Pd40Cu30P20Ni10. Acta Mater. 50, 1319 2002

    CAS  Article  Google Scholar 

  33. 33

    H. Nitsche, F. Sommer E.J. Mittemeijer: The Al nano-crystallization process in amorphous Al85Ni8Y5Co2. J. Non-Cryst. Solids. 351, 3760 2005

    CAS  Article  Google Scholar 

  34. 34

    F. Liu, F. Sommer E.J. Mittemeijer: Parameter determination of an analytical model for phase transformation kinetics: application to crystallization of amorphous Mg–Ni alloys. J. Mater. Res. 19(9), 2586 2004

    CAS  Article  Google Scholar 

  35. 35

    W. Oldfield: A quantitative approach to casting solidification. Trans. ASM 59, 945 1966

    CAS  Google Scholar 

  36. 36

    W.J. Boettinger, S.R. Coriell R. Trivedi: Rapid Solidification Processing: Principles and Technologies IV edited by R. Mehrabian, P.A. Parrish Claitor’s Baton Rouge LA 1988 13

  37. 37

    M.J. Aziz: Model for solute redistribution during rapid solidification. J. Appl. Phys. 53, 1158 1982

    CAS  Article  Google Scholar 

  38. 38

    Y.P. Lu, F. Liu, G.C. Yang, H.P. Wang Y.H. Zhou: Grain refinement in solidification of highly undercooled eutectic Ni–Si alloy. Mater. Lett. 61(4–5), 987 2007

    CAS  Article  Google Scholar 

  39. 39

    Y.P. Lu, F. Liu, G.C. Yang Y.H. Zhou: Composite growth in highly undercooled Ni70.2Si29.8 eutectic alloy. Appl. Phys. Lett. 89, 241902 2006

    Article  CAS  Google Scholar 

  40. 40

    F. Spaepen: A structural model for the solid–liquid interface in monatomic systems. Acta Metall. 23, 729 1975

    CAS  Article  Google Scholar 

  41. 41

    G. Wilde, J.L. Sebright J.H. Perepezko: Bulk liquid undercooling and nucleation in gold. Acta Mater. 54, 4759 2006

    CAS  Article  Google Scholar 

  42. 42

    M. Schwarz, A. Karma, K. Eckler D.M. Herlach: Physical mechanism of grain refinement in solidification of undercooled melts. Phys. Rev. Lett. 73, 1380 1994

    CAS  Article  Google Scholar 

  43. 43

    R. Willnecker, G.P. Görler G. Wilde: Appearance of a hypercooled liquid region for completely miscible alloys. Mater. Sci. Eng., A 226–228, 439 1997

    Article  Google Scholar 

  44. 44

    M. Li, T. Ishikawa, K. Nagashio, K. Kuribayashi S. Yoda: Experimental evidence of crystal fragmentation from highly undercooled Ni99B1 melts processed on an electrostatic levitator. Metall. Mater. Trans. A 36A, 3254 2005

    CAS  Article  Google Scholar 

Download references


The authors are grateful for the financial support of New Century Excellent Person Supporting Project (NCET-05-870), the Fundamental Research Project of National Defense of China (A2720060295), the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (N6CJ0002), the Scientific and Technological Creative Foundation of Youth in Northwestern Polytechnical University, and the Natural Science Foundation of China (Grant Nos. 50501020, 50395103, and 50431030). F. Liu is also grateful to the Fundamental Research Fund of Northwestern Polytechnical University. F. Liu appreciates Dr. Yao Wenjing for numerical calculations.

Author information



Corresponding author

Correspondence to Feng Liu.

APPENDIX: Calculation of f(Θ) for α-Ni and Ni3Si Phases

APPENDIX: Calculation of f(Θ) for α-Ni and Ni3Si Phases

In the undercooled melts, the critical condition for crystallization can be given as

$$JV{t_{\text{N}}} = N$$

where V is the volume of sample, tN is the nucleation time that can be directly obtained from the measured temperature–time profile, and N is the number of nucleation events, which can be assumed to be the number of dendritic grain or eutectic colony. V and tN, with respect to ΔT = 180 K where both α-Ni and Ni3Si are assumed to be able to nucleate, are listed in Table I. As shown in Fig. 3, N is equal to 6.97 × 103 at ΔT =180 K, Then, applying Eq. (A1), the value of J at ΔT = 180 K was calculated as 5 × 106 m−3s−1. In combination with Eq. (3), f(θ) for α-Ni and Ni3Si phases can be calculated as 0.26 and 0.39, respectively. Because of the structural difference between α-Ni and Ni3Si, the catalyzed effect of heterogeneities on their nucleation was certainly expected to be quite different. Thus, f(θ) values for α-Ni and Ni3Si phases should certainly be different.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, F., Chen, Y., Yang, G. et al. Competitions incorporated in rapid solidification of the bulk undercooled eutectic Ni78.6Si21.4 alloy. Journal of Materials Research 22, 2953–2963 (2007).

Download citation