Synthesis, crystal structure, and thermoelectric properties of a new layered carbide (ZrC)3[Al3.56Si0.44]C3


A new quaternary layered carbide, (ZrC)3[Al3.56Si0.44]C3, has been synthesized and characterized by x-ray powder diffraction and thermopower and electrical conductivity measurements. The crystal structure was successfully determined using direct methods and further refined by the Rietveld method. The crystal is trigonal (space group R3m*, Z = 3) with lattice dimensions a = 0.331389(7), c = 4.90084(7) nm, and V = 0.46610(1) nm3. The final reliability indices calculated from the Rietveld refinement were Rwp = 9.53% (S = 1.70), Rp = 7.22%, RB = 1.81%, and RF = 0.94%. The crystal structure is composed of the NaCl-type [Zr3C4] slabs separated by the Al4C3-type [Al0.89Si0.11C] layers. This material had thermoelectric properties comparable to the layered carbides (ZrC)2[Al3.56Si0.44]C3 (Zr2[Al3.56Si0.44]C5), (ZrC)2Al3C2, and (ZrC)3Al3C2 in the temperature range of 373–1273 K, with the maximal power-factor value of 6.6 × 10−5 W m−1K−2 at 545 K. The two quaternary carbides have been found to form a homologous series with the general formula of (ZrC)n[Al3.56Si0.44]C3 (n = 2 and 3).

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1
FIG. 2
FIG. 3
FIG. 4


  1. 1

    J.C. Schuster H. Nowotny: Investigations of the ternary systems (Zr, Hf, Nb, Ta)–Al–C and studies on complex carbides. Z. Metallkd. 71, 341 1980

    CAS  Google Scholar 

  2. 2

    Th.M. Gesing W. Jeitschko: The crystal structure of Zr3Al3C5, ScAl3C3, and UAl3C3 and their relation to the structure of U2Al3C4 and Al4C3. J. Solid State Chem. 140, 396 1998

    CAS  Article  Google Scholar 

  3. 3

    K. Fukuda, S. Mori S. Hashimoto: Crystal structure of Zr2Al3C4. J. Am. Ceram. Soc. 88, 3528 2005

    CAS  Article  Google Scholar 

  4. 4

    B.L. Kidwell, L.L. Oden R.A. McCune: 2Al4C3·SiC: A new intermediate phase in the Al–Si–C system. J. Appl. Crystallogr. 17, 481 1984

    CAS  Article  Google Scholar 

  5. 5

    K. Fukuda, M. Hisamura, T. Iwata, N. Tera K. Sato: Synthesis, crystal structure and thermoelectric properties of a new carbide Zr2[Al3.56Si0.44]C5. J. Solid State Chem. 180, 1809 2007

    CAS  Article  Google Scholar 

  6. 6

    L.D. Hicks M.S. Dresselhaus: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 1993

    CAS  Article  Google Scholar 

  7. 7

    L.D. Hicks M.S. Dresselhaus: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631 1993

    CAS  Article  Google Scholar 

  8. 8

    L.D. Hicks, T.C. Harman M.S. Dresselhaus: Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Appl. Phys. Lett. 63, 3230 1993

    CAS  Article  Google Scholar 

  9. 9

    K. Koumoto, H. Koduka W-S. Seo: Thermoelectric properties of single crystal CuAlO2 with a layered structure. J. Mater. Chem. 11, 251 2001

    CAS  Article  Google Scholar 

  10. 10

    M. Yasukawa, K. Ikeuchi, T. Kono, K. Ueda H. Hosono: Thermoelectric properties of delafossite-type layered oxides AgIn1−xSnxO2. J. Appl. Phys. 98, 013706/1 2005

    CAS  Article  Google Scholar 

  11. 11

    T. Mori T. Nishimura: Thermoelectric properties of homologous p- and n-type boron-rich borides. J. Solid State Chem. 179, 2908 2006

    CAS  Article  Google Scholar 

  12. 12

    K. Fukuda M. Hisamura: Crystal structure and thermoelectric properties of YAl3C3. J. Am. Ceram. Soc. (in press)

  13. 13

    F. Izumi R.A. Dilanian: VENUS: A 3D visualization system for crystal structures and electron nuclear densities. IUCr Newslett. 32, 59 2005

    Google Scholar 

  14. 14

    L.M. Gelato E. Parthé: STRUCTURE TIDY—A computer program to standardize crystal structure data. J. Appl. Crystallogr. 20, 139 1987

    Article  Google Scholar 

  15. 15

    G.S. Pawley: Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 14, 357 1981

    CAS  Article  Google Scholar 

  16. 16

    H. Toraya: Whole-powder-pattern fitting without reference to a structural model: Application to x-ray powder diffractometer data. J. Appl. Crystallogr. 19, 440 1986

    CAS  Article  Google Scholar 

  17. 17

    A. Altomare, M.C. Burla, M. Camalli, B. Carrozzini, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori R. Rizzi: EXPO program for full powder pattern decomposition and crystal structure solution. J. Appl. Crystallogr. 32, 339 1999

    CAS  Article  Google Scholar 

  18. 18

    The Rietveld Method, edited by R.A. Young (Oxford University Press, Oxford, UK, 1993 1, 38

  19. 19

    F. Izumi T. Ikeda: A Rietveld-analysis program RIETAN-98 and its applications to zeolites. Mater. Sci. Forum 321–324, 198 2000

    Article  Google Scholar 

  20. 20

    H. Toraya: Array-type universal profile function for powder pattern fitting. J. Appl. Crystallogr. 23, 485 1990

    CAS  Article  Google Scholar 

  21. 21

    W.A. Dollase: Correction of intensities for preferred orientation in powder diffractometry: application of the march model. J. Appl. Crystallogr. 19, 267 1986

    CAS  Google Scholar 

  22. 22

    G.W. Brindley: Quantitative x-ray analysis of crystalline substances or phases in their mixtures. Bull. Soc. Chim. Fr. D591949

    Google Scholar 

  23. 23

    Th.M. Gesing W. Jeitschko: The crystal structure and chemical properties of U2Al3C4 and structure refinement of Al4C3. Z. Naturforsch. 50B, 196 1995

    Article  Google Scholar 

Download references


Supported by a Grant-in-Aid for Scientific Research (No. 18560654) from the Japan Society for the Promotion of Science and by a grant from the Thermal and Electric Energy Technology Foundation, Japan.

Author information



Corresponding author

Correspondence to Koichiro Fukuda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fukuda, K., Hisamura, M., Kawamoto, Y. et al. Synthesis, crystal structure, and thermoelectric properties of a new layered carbide (ZrC)3[Al3.56Si0.44]C3. Journal of Materials Research 22, 2888–2894 (2007).

Download citation