Grain growth in nanocomposite Ti–B–N films during deposition: The effect of amorphous phase precipitation


Experimental investigations by high-resolution transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction show that during sputter-deposition of Ti–B–N films amorphous materials, e.g., TiB2 and BN, are found to precipitate at the grain boundaries, resulting in a decrease in grain size when the boron concentration or the amount of amorphous phase increases. To understand these experimental observations, we have used Monte Carlo simulations to investigate the effect of the amorphous phase precipitation on grain growth during film deposition. Our simulations demonstrate that the precipitation of amorphous phase at the grain boundaries can lower the grain growth exponent and thus leads to a low grain growth rate, particularly in the case of large amounts of amorphous phase. As a result, an exponential decay in grain size with the amount of amorphous phase can be observed in our simulations, which is in reasonably good agreement with the experimental results.

This is a preview of subscription content, access via your institution.


  1. 1.

    P. Losbichler, C. Mitterer, P.N. Gibson, W. Gissler, F. Hofer and P. Warbichler: Co-sputtered films within the quasi-binary system TiN–TiB2. Surf. Coat. Technol. 94–95, 297 (1997).

    Article  Google Scholar 

  2. 2.

    C. Heau and J.P. Terrat: Ultrahard Ti–B–N coatings obtained by reactive magnetron sputtering of a Ti–B target. Surf. Coat. Technol. 108–109, 332 (1998).

    Article  Google Scholar 

  3. 3.

    C. Mitterer, P. Losbichler, F. Hofer, P. Warbichler, P.N. Gibson and W. Gissler: Nanocrystalline hard coatings within the quasi-binary system TiN–TiB2. Vacuum 50, 313 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    C. Mitterer, P.H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P.N. Gibson, W. Gissler, H. Hruby, J. Musil and J. Vlcek: Microstructure and properties of nanocomposite Ti–B–N and Ti–B–C coatings. Surf. Coat. Technol. 120–121, 405 (1999).

    Article  Google Scholar 

  5. 5.

    C. Heau, R.Y. Fillit, F. Vaux and F. Pascaretti: Study of thermal stability of some hard nitride coatings deposited by reactive magnetron sputtering. Surf. Coat. Technol. 120–121, 200 (1999).

    Article  Google Scholar 

  6. 6.

    P. Karvankova, M.G.J. Veprek-Heijman, O. Zindulka, A. Bergmaier and S. Veprek: Superhard nc-TiN/a-BN and nc-TiN/a-TiBx/a-BN coatings prepared by plasma CVD and PVD: A comparative study of their properties. Surf. Coat. Technol. 163–164, 149 (2003).

    Article  Google Scholar 

  7. 7.

    D.H. Jung, H. Kim, G.R. Lee, B. Park, J.J. Lee and J.H. Joo: Deposition of Ti–B–N films by ICP assisted sputtering. Surf. Coat. Technol. 174–175, 638 (2003).

    Article  Google Scholar 

  8. 8.

    S. Zhang, D. Sun, Y.Q. Fu and H. Du: Recent advances of superhard nanocomposite coatings: A review. Surf. Coat. Technol. 167, 113 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    Y.H. Lu, Z.F. Zhou, P. Sit, Y.G. Shen, K.Y. Li and H. Chen: X-ray photoelectron spectroscopy characterization of reactively sputtered Ti–B–N thin films. Surf. Coat. Technol. 187, 98 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    H.P. Klug and L.E. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974).

    Google Scholar 

  11. 11.

    Z.J. Liu, C.H. Zhang, Y.G. Shen and Y.M. Mai: Monte Carlo simulation of nanocrystalline TiN/amorphous SiNx composite films. J. Appl. Phys. 95, 758 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    Y.G. Shen, Z.J. Liu, N. Jiang, H.S. Zhang, K.H. Chan and Z.K. Xu: Effect of silicon addition on surface morphology and structural properties of titanium nitride films grown by reactive unbalanced direct current magnetron sputtering. J. Mater. Res. 19, 523 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    C.V. Thompson: Structure evolution during processing of polycrystalline films. Ann. Rev. Mater. Sci. 30, 159 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    A.E. Lita, J.E. Sanchez Jr.: Characterization of surface structure in sputtered Al films: Correlation to microstructure evolution. J. Appl. Phys. 85, 876 (1999).

    CAS  Article  Google Scholar 

  15. 15.

    A.E. Lita, J.E. Sanchez Jr.: Effects of grain growth on dynamic surface scaling during the deposition of Al polycrystalline thin films. Phys. Rev. B 61, 7692 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    A.J. Dammers and S. Radelaar: A grain growth model for evolution of polycrystalline surfaces. Mater. Sci. Forum. 94–96, 345 (1991).

    Google Scholar 

  17. 17.

    D.J. Srolovitz: Grain growth in thin films: A Monte-Carlo approach. J. Vac. Sci. Technol. A 4, 2925 (1986).

    CAS  Article  Google Scholar 

  18. 18.

    A. Mazor, D.J. Srolovitz, P.S. Hagan and B.G. Bukiet: Columnar growth in thin films. Phys. Rev. Lett. 60, 424 (1988).

    CAS  Article  Google Scholar 

  19. 19.

    D.J. Srolovitz, A. Mazor and B.G. Bukiet: Analytical and numerical modeling of columnar evolution in thin films. J. Vac. Sci. Technol. A 6, 2371 (1988).

    CAS  Article  Google Scholar 

  20. 20.

    C. Paritosh, D.J. Srolovitz, C.C. Battaile, X. Li and J.E. Butler: Simulation of faceted film growth in two-dimensions: Microstructure, morphology and texture. Acta Mater. 47, 2269 (1999).

    CAS  Article  Google Scholar 

  21. 21.

    S.K. Kurtz and F.M.A. Carpay: Microstructure and normal grain growth in metals and ceramics. 1: Theory. J. Appl. Phys. 51, 5725 (1980).

    CAS  Article  Google Scholar 

  22. 22.

    W.W. Mullins and J. Vinals: Self-similarity and growth-kinetics driven by surface free energy reduction. Acta Metall. 37, 991 (1989).

    Article  Google Scholar 

  23. 23.

    X.Y. Song, G.Q. Liu and Y.Z. He: Modified Monte Carlo method for grain growth simulation. Prog. Nat. Sci. 8, 92 (1998).

    Google Scholar 

  24. 24.

    B. Radhakrishnan and T. Zacharia: Simulation of curvature-driven grain growth by using a modified Monte Carlo algorithm. Metall. Mater. Trans. A 26, 167 (1995).

    Article  Google Scholar 

  25. 25.

    M.P. Anderson, G.S. Grest and D.J. Srolovitz: Computer-simulation of normal grain-growth in 3 dimensions. Philos. Mag. B 59, 293 (1989).

    Article  Google Scholar 

  26. 26.

    G.S. Grest, M.P. Anderson and D.J. Srolovitz: Domain-growth kinetics for the Q-state Potts-model in 2-dimension and 3-dimension. Phys. Rev. B 38, 4752 (1988).

    CAS  Article  Google Scholar 

  27. 27.

    S. Kumar, J.D. Gunton and K. Kaski: Dynamic scaling in the Q-state Potts model. Phys. Rev. B 35, 8517 (1987).

    CAS  Article  Google Scholar 

  28. 28.

    C.W.J. Beenakker: Numerical simulation of a coarsening two-dimensional network. Phys. Rev. A 37, 1697 (1988).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Z. J. Liu.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, Z.J., Lu, Y.H. & Shen, Y.G. Grain growth in nanocomposite Ti–B–N films during deposition: The effect of amorphous phase precipitation. Journal of Materials Research 21, 82–87 (2006).

Download citation