Plasmon resonance absorption in sulfide-coated gold nanorods


Gold nanorods 100 nm in diameter were grown within polycarbonate membranes as templates by the electrodeposition technique. A low-temperature sulfidation process was used to make gold sulfide nanoshells around the nanorods with a thickness of 7 nm. Optical absorption measurements were carried out on sulfide-coated gold nanorods obtained by dissolving the polycarbonate membrane. Several peaks were observed. These were analyzed on the basis of longitudinal and transverse modes of gold nanorods, the core-shell structure of gold-gold sulfide, and the presence of nanoparticles of gold. Theoretical analysis was carried out using a modified Mie scattering formalism. Satisfactory agreement between experimental results and theoretical fits were obtained.

This is a preview of subscription content, access via your institution.


  1. 1.

    J.M. Weissman, H.B. Sunkara, A.S. Tse and S.A. Asher: Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274, 959 (1996).

    CAS  Article  Google Scholar 

  2. 2.

    R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger and C.A. Mirkin: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    C.A. Mirkin, R.L. Letsinger, R.C. Mucic and J.J. Storhoff: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature (London) 382, 607 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    C.L. Haynes and R.P. Van Duyne: Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optic. J. Phys. Chem. B 105, 5599 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    E.F. Schubert, N.E.J. Hunt, M. Micovic, R.J. Malik, D.L. Sivco, A.Y. Cho and G.J. Zydzik: Highly efficient light-emitting diodes with microcavities. Science 265, 943 (1994).

    CAS  Article  Google Scholar 

  6. 6.

    M.C. Wanke, O. Lehmann, K. Muller, Q. Wen and M. Stuke: Laser rapid prototyping of photonic band-gap microstructures Science 275, 1284 (1997).

    CAS  Article  Google Scholar 

  7. 7.

    J.D. Joannopoulous, P.R. Villeneuve and S. Fan: Photonic crystals: Putting a new twist on light. Nature (London) 386, 143 (1997).

    Article  Google Scholar 

  8. 8.

    F. Hache, D. Ricard and C. Flytzanis: Optical nonlinearities of small metal particles: Surface-mediated resonance and quantum-size effects. J. Opt. Soc. Am. B 3, 1647 (1986).

    CAS  Article  Google Scholar 

  9. 9.

    D.S. Wang and M. Kerker: Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids. Phys. Rev. B 24, 1777 (1981).

    CAS  Article  Google Scholar 

  10. 10.

    Z.S. Li, C.X. Kan and W.P. Cai: Tunable optical properties of nanostructured-gold/mesoporous-silica assembly. Appl. Phys. Lett. 82, 1392 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    G. Mie: Contribution to the optics of turbid media specifically colloidal metal particles. Ann. Phys. (Leipzig) 25, 377 (1908).

    CAS  Article  Google Scholar 

  12. 12.

    C.G. Granqvist, N. Clander and O. Hunderi: Optical properties of ultrafine silver particles. Solid State Commun. 31, 249 (1979).

    CAS  Article  Google Scholar 

  13. 13.

    C. Sonnichsen, T. Franzl, T. Wilk, Von G. Plessen, J. Feldmann, O. Wilson and P. Mulvaney: Drastic reduction of plasmon damping in gold nanorods phys. Rev. Lett. 88, 077402 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    A.E. Neeves and M.H. Birnboim: Composite structures for the enhancement of nonlinear optical materials. Opt. Lett. 134, 1087 (1988).

    Article  Google Scholar 

  15. 15.

    J.W. Haus, H.S. Zhou, I. Honma and H. Komiyama: Enhanced optical properties of metal-coated nanoparticles. J. Appl. Phys. 73, 1043 (1993).

    CAS  Article  Google Scholar 

  16. 16.

    K. Chatterjee, S. Banerjee and D. Chakravorty: Plasmon resonance shifts in oxide-coated silver nanoparticles. Phys. Rev. B66, 085421 (2002).

    Article  Google Scholar 

  17. 17.

    S. Banerjee, S. Banerjee, A. Datta and D. Chakravorty: Nanocomposite gel-derived films by fractal growth of silver. Europhys. Lett. 46, 346 (1999).

    CAS  Article  Google Scholar 

  18. 18.

    S. Bhattacharyya, S.K. Saha and D. Chakravorty: Silver nanowires grown in the pores of a silica gel. Appl. Phys. Lett. 77, 3770 (2000).

    CAS  Article  Google Scholar 

  19. 19.

    A. Dan, B. Satpati, P.V. Satyam and D. Chakravorty: Diodelike behavior in glass-metal nanocomposites. J. Appl. Phys. 93, 4794 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    Handbook of Chemistry and Physics, edited by C.D. Hodgman (The Chemical Rubber Publishing Co., Cleveland, OH, 1962), p. 2672.

  21. 21.

    R. Gans: Form of ultramicroscopic particles of silver. Ann. Physik. 47, 270 (1915).

    CAS  Article  Google Scholar 

  22. 22.

    G.C. Papavassiliou: Optical properties of small inorganic and organic metal particles. Prog. Solid State Chem. 12, 185 (1980).

    Article  Google Scholar 

  23. 23.

    P.B. Johnson and R.W. Christy: Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).

    CAS  Article  Google Scholar 

  24. 24.

    S. Link, M.B. Mohamed and M.A. El-Sayed: Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103, 3073 (1999).

    CAS  Article  Google Scholar 

  25. 25.

    H.S. Zhou, I. Honma, H. Komiyama and J.W. Hous: Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys. Rev. B 50, 12052 (1994).

    CAS  Article  Google Scholar 

  26. 26.

    U. Kreibig: Electronic properties of small silver particles: The optical constants and their temperature dependence. J. Phys. F: Met. Phys. 4, 999 (1974).

    CAS  Article  Google Scholar 

  27. 27.

    C. Kittel: Introduction to Solid State Physics (Wiley, New York, London, 1961), p. 374.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. Chakravorty.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chatterjee, K., Basu, S. & Chakravorty, D. Plasmon resonance absorption in sulfide-coated gold nanorods. Journal of Materials Research 21, 34–40 (2006).

Download citation