Comparative study on electrical and microstructural characteristics of ZrO2 and HfO2 grown by atomic layer deposition


Ultra-thin ZrO2 and HfO2 dielectric films grown by atomic layer deposition (ALD) are quite promising materials for gate dielectric applications in future transistors, and they exhibit significantly different as-grown microstructures: polycrystalline and amorphous phases, respectively. However, under the identical deposition conditions, both metal oxides show surprisingly similar capacitance–voltage (C–V) characteristics as a function of film thickness, implying that the identities and densities of fixed charge and bulk trapping charge are similar. Factors other than the film microstructure, such as concentration of impurities incorporated during the film deposition, are believed predominantly to control important C–V characteristics. Only the dielectric constant appears to depend significantly on the identity of the dielectric material. It is found that the dielectric constant of ALD-HfO2 (∼20) is significantly lower than that of ZrO2 (∼30) due to the differences in microstructure and also atomic density of the film. In terms of the leakage current characteristics, the effective potential barrier heights between Pt and these two dielectric films are identical (∼2.3 eV) within the experimental uncertainty. Implications for the electrode/dielectric interface electronic structure are discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    C.J. Frosch and L. Derick: Surface protection and selective masking during diffusion in silicon. J. Electrochem. Soc. 104, 547 (1957).

    CAS  Article  Google Scholar 

  2. 2.

    D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, Evans-K. Lutterodt and G. Timp: Electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    S. Tang, R.M. Wallace, A. Seabaugh and King-D. Smith: Evaluating the minimum thickness of gate oxide on silicon using first-principles method. Appl. Surf. Sci. 135, 137 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi and M. Bohr: Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors. Tech. Dig. VLSI Symp. 2000, 174 (2000).

    Google Scholar 

  5. 5.

    S.H. Lo, D.A. Buchanan, Y. Taur and W. Wang: Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett. 18, 209 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    G.D. Wilk, R.M. Wallace and J.M. Anthony: High-kappa gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    M. Ritala, K. Kukli, P.I. Raisanen, M. Leskela, T. Sajavaara and J. Keinonen: Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources. Science 288, 319 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    J. Robertson: Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B 18, 1785 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    H. Kim, P.C. McIntyre and K.C. Saraswat: Microstructural evolution of ZrO2–HfO2 nanolaminate structures grown by atomic layer deposition. J. Mater. Res. 19, 643 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    K.J. Yang and C.M. Hu: MOS capacitance measurements for high-leakage thin dielectrics. IEEE Trans. Electron Devices 46, 1500 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    E. Ruh, H.J. Garrerr, R.F. Domagala and N.M. Tallan: System zirconia–hafnia. J. Am. Ceram. Soc. 51, 27 (1968).

    Article  Google Scholar 

  12. 12.

    S.K. Dey, C.G. Wang, D. Tang, M.J. Kim, R.W. Carpenter, C. Werkhoven and E. Shero: Atomic layer chemical vapor deposition of ZrO2-based dielectric films: Nanostructure and nanochemistry. J. Appl. Phys. 93, 4144 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    C.M. Scanlan, Gajdardziska-M. Josifovska and C.R. Aita: Tetragonal zirconia growth by nanolaminate formation. Appl. Phys. Lett. 64, 3548 (1994).

    CAS  Article  Google Scholar 

  14. 14.

    R.C. Garvie and M.V. Swain: Thermodynamics of the tetragonal to monoclinic phase transformation in constrained zirconia microcrystals. I. In the absence of an applied stress field. J. Mater. Sci. 20, 1193 (1985).

    CAS  Article  Google Scholar 

  15. 15.

    C.R. Aita, M.D. Wiggins, R. Whig, C.M. Scanlan and Gajdardziska-M. Josifovska: Thermodynamics of tetragonal zirconia formation in a nanolaminate film. J. Appl. Phys. 79, 1176 (1996).

    CAS  Article  Google Scholar 

  16. 16.

    M.-Y. Ho, H. Gong, G.D. Wilk, B.W. Busch, M.L. Green, P.M. Voyles, D.A. Muller, M. Bude, W.H. Lin, A. See, M.E. Loomans, S.K. Lahiri and P.I. Räisänen: Morphology and crystallization kinetics in HfO2 thin films grown by atomic layer deposition. J. Appl. Phys. 93, 1477 (2003).

    CAS  Article  Google Scholar 

  17. 17.

    H. Kim, P.C. McIntyre, and K.C. Saraswat: Unpublished work.

  18. 18.

    B.H. Lee, L. Kang, W.-J. Qi, R. Nieh, Y. Jeon, K. Onishi and J.C. Lee: Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application. Tech. Dig. Int. Electron Devices Mtg. 1999, 133 (1999).

    Google Scholar 

  19. 19.

    L. Kang, B.H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi and J.C. Lee: Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric. IEEE Electron Device Lett. 21, 181 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    W.-J. Qi, R. Nieh, B.H. Lee, L. Kang, Y. Jeon, K. Onishi, T. Ngai, S. Banerjee and J.C. Lee: MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposited directly on Si. Tech. Dig. Int. Electron Devices Mtg. 1999, 145 (1999).

    Google Scholar 

  21. 21.

    M. Houssa, V.V. Afanas’ev, A. Stesmans and M.M. Heyns: Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation. Appl. Phys. Lett. 77, 1885 (2000).

    CAS  Article  Google Scholar 

  22. 22.

    D.P. Thompson, A.M. Dickins and J.S. Thorp: The dielectric properties of zirconia. J. Mater. Sci. 27, 2267 (1992).

    CAS  Article  Google Scholar 

  23. 23.

    D. Gerstenberg Thin film capacitors, in Handbook of Thin Film Technology, edited by L.I. Maissel and R. Glang (McGraw-Hill, New York, 1970) Chap. 17, p. 21.

  24. 24.

    G.D. Wilk and D.A. Muller: Correlation of annealing effects on local electronic structure and macroscopic electrical properties for HfO2 deposited by atomic layer deposition. Appl. Phys. Lett. 83, 3984 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    Z. Xu, M. Houssa, S.D. Gendt and M. Heyns: Polarity effect on the temperature dependence of leakage current through HfO2/SiO2 gate dielectric stacks. Appl. Phys. Lett. 80, 1975 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    S.M. Sze: Physics of semiconductor devices, 2nd ed.; (Wiley, New York, 1981) p. 403.

    Google Scholar 

  27. 27.

    W.J. Zhu, T.P. Ma, T. Tamagawa, J. Kim and Y. Di: Current transport in metal/hafnium oxide/silicon structure. IEEE Electron Device Lett. 23, 97 (2002).

    CAS  Article  Google Scholar 

  28. 28.

    M. Houssa, M. Tuominen, M. Naili, V. Afanas’ev, A. Stesmans, S. Hukka and M.M. Heyns: Trap-assisted tunneling in high permittivity gate dielectric stacks. J. Appl. Phys. 87, 8615 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    H. Kim, P.C. McIntyre and K.C. Saraswat: Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 82, 106 (2003).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hyoungsub Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, H., Saraswat, K.C. & McIntyre, P.C. Comparative study on electrical and microstructural characteristics of ZrO2 and HfO2 grown by atomic layer deposition. Journal of Materials Research 20, 3125–3132 (2005).

Download citation