Abstract
Cobalt nanoparticles were synthesized on silica thin films by heat treating Co/silica films spun on thermally oxidized Si substrates. The as-deposited films were calcined in vacuum (∼0.03 Torr) for 2 h at 500 °C, followed by reduction in hydrogen at 650 °C for up to 15 h. The reduction process is characterized as one of time-dependent evolution of nanoparticles in both physical appearance and phase nature, eventually leading to the formation of well-dispersed Co nanoparticles, as ascertained by x-ray photoelectron spectroscopy and scanning electron microscopy. Slow conversion of Co ions into metallic Co observed in this study is ascribed to the absence of a Co3O4 phase that forms predominantly during calcination in air. Atomic force microscopy revealed a marked increase in the surface roughness of the film due to the development of nanoparticles. A distinct duplex-layer structure was observed in the reduced film, which consisted of the upper layer laden with nanoparticles and the lower layer essentially particle-free. The growth of the upper layer appears to be controlled by the upward diffusion of Co2+ in the film during the reduction process.
This is a preview of subscription content, access via your institution.
References
- 1.
W.D. Zhang, Y. Wen, W.C. Tjiu, G.Q. Xu and L.M. Gan: Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates. Carbon 40, 1981 (2002).
- 2.
A. Weidenkaff, S.G. Ebbinghaus, P. Mauron., A. Reller, Y. Zhang and A. Zuttel: Metal nanoparticles for the production of carbon nanotube composite materials by decomposition of different carbon sources. Mater. Sci. Eng., C 19, 119 (2002).
- 3.
C.J. Lee and J. Park: Growth and structure of carbon nanotubes produced by thermal chemical vapor. Carbon 39, 1891 (2001).
- 4.
S. Hofmann, B. Kleinsorge, C. Ducati, A.C. Ferrari and J. Robertson: Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes. Diamond Relat. Mater. 13, 1171 (2004).
- 5.
T. Matsuzaki, K. Takeuchi, T.A. Hanoaka, H. Arakawa and Y. Sugi: Hydrogenation of carbon monoxide over highly dispersed cobalt catalysts derived from cobalt (II) acetate. Catal. Today 28, 251 (1996).
- 6.
A. Kukoveca, Z. Konya, N. Nagaraju, I. Willems, A. Tamasi, A. Fonseca, J.B. Nagy and I. Kirisci: Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol.gel silica.aluminas. Phys. Chem. Chem. Phys. 2, 3071 (2000).
- 7.
C.L. Cheung, A. Kurtz, H. Park and C.M. Lieber: Diameter controlled synthesis of carbon nanotubes. J. Phys. Chem. B 106, 2429 (2002).
- 8.
O.A. Nerushev, S. Dittmar, R.E. Morjan, F. Rohmund and E.E.B. Campbell: Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition. J. Appl. Phys. 93, 4185 (2003).
- 9.
Y. Huh, J.Y. Lee, J. Cheon, Y.K. Hong, J.Y. Koo, T.J. Lee and C.J. Lee: Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition. J. Mater. Chem. 13, 2297 (2003).
- 10.
M. Nath, B.C. Satishkumar, A. Govindaraj, C.P. Vinod and C.N.R. Rao: Formation of bundles of aligned carbon and carbon-nitrogen nanotubes on silica-supported iron and cobalt catalysts. Chem. Phys. Lett. 322, 333 (2000).
- 11.
W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao and G. Wang: Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701 (1996).
- 12.
H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki and M. Yumura: Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett. 77(1), 79 (2000).
- 13.
M. Torrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto and D.R.M. Walton: Controlled production of aligned-nanotube bundles. Nature 388, 52 (1997).
- 14.
A.M. Cassell, S. Verma, L. Delzeit, M. Meyyappan and J. Han: Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes. Langmuir 17, 260 (2001).
- 15.
F.M. Cano, O.L.J. Gijzeman, F.M.F. de Groot and B.M. Weckhuysen: Manganese promotion in cobalt-based Fischer–Tropsch catalysis. Stud. Surf. Sci. Catal. 147, 271 (2004).
- 16.
J.M. Jablonski, J. Okal, Potoczna-D. Petru and L. Krajczyk: High temperature reduction with hydrogen, phase composition, and activity of cobalt/silica catalysts. J. Catal. 220, 146 (2003).
- 17.
R.C. Reuel and C.H. Bartholomew: Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of Cobalt. J. Catal. 85, 78 (1984).
- 18.
L.B. Backman, A. Rautiainen, M. Lindblad and A.O.I. Krause: Effect of support and calcination on the properties of cobalt catalysts prepared by gas phase deposition. Appl. Catal., A 191, 55 (2000).
- 19.
S. Sun, N. Tsubaki and K. Fujimoto: The reaction performances and characterization of Fischer-Tropsch synthesis Co/SiO2 catalysts prepared from mixed cobalt salts. Appl. Catal., A 202, 121 (2000).
- 20.
J. Panpranot, S. Kaewkun, P. Praserthdam, J.G. Goodwin Jr.: Effect of cobalt precursors on the dispersion of cobalt on MCM-41. Catal. Lett. 91, 95 (2003).
- 21.
R. Riva, H. Miessner, R. Vitali and G. Piero Del: Metal-support interactionin Co/SiO2 and Co/TiO2. Appl. Catal., A 196, 111 (2000).
- 22.
N. Tsubaki, S. Sun and K. Fujimoto: Different functions of the noble metals added to cobalt catalysts for Fischer–Tropsch synthesis. J. Catal. 199, 236 (2001).
- 23.
A.Y. Khodakov, J. Lunch, D. Bazin, B. Rebours, N. Zanier, B. Moisson and P. Chaumette: Reducibility of cobalt species in silica-supported Fischer–Tropsch catalysts. J. Catal. 168, 16 (1997).
- 24.
J. Panpranot, J.G. Goodwin Jr. and A. Sayari: CO hydrogenation on Ru-promoted Co/MCM-41 catalysts. J. Catal. 211, 530 (2002).
- 25.
A. Barbier, A. Hanif, J. Dalmon and G.A. Martin: Preparation and characterization of well-dispersed and stable Co/SiO2 catalysts using the ammonia method. Appl. Catal., A 168, 333 (1998).
- 26.
C.M. Lok, G. Gray, and G.J. Kelly: Catalysts with high cobalt surface area. International Patent Publication Number, WO 01/87480 A1 (2001).
- 27.
E. Iglesia: Natural Gas Conversion IV, Studies in Surface Science and Catalysis, (Elsevier Science B.V, Amsterdam, The Netherlands, 1997), p. 153, 107.
- 28.
W.K. Jozwiak, E. Szubiakiewicz, J. Goralski, A. Klonkowski and T. Paryjczak: Physico-chemical and catalytic study of the Co/SiO2 catalysts. Kinetics Catal. 45, 247 (2004).
- 29.
E.J.C. Dawnay, M.A. Fardad, M. Green and E.M. Yeatman: Growth and characterization of semiconductor nanoparticles in porous sol-gel films. J. Mater. Res. 12, 3115 (1997).
- 30.
P. Yang, C.F. Song, M.K. Lu, X. Yin, G.J. Zhou, D. Xu and D.R. Yuan: The luminescence of PbS nanoparticles embedded in sol-gel silica glass. Chem. Phys. Lett. 345, 429 (2001).
- 31.
A. Martucci, J. Fick, J. Schell, G. Battaglin and M. Guglielmi: Microstructural and nonlinear optical properties of silica–titania sol-gel film doped with PbS quantum dots. J. Appl. Phys. 86, 79 (1999).
- 32.
Potoczna-D. Petru and L. Krajczyk: Spreading of cobalt phase and silicate formation in Co/SiO2 model catalyst. Catal. Lett. 87, 51 (2003).
- 33.
P. Hudon and D.R. Baker: The nature of phase separation in binary oxide melts and glasses. I. Silicate systems. J. Non-Cryst. Solids 303, 299 (2002).
- 34.
I. Alstrup, I. Chorkendorff, R. Candia, B.S. Clausen and H. Topsøe: A combined x-ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported and unsupported Co–Mo catalysts. J. Catal. 77, 397 (1982).
- 35.
Z.P. Xu and H.C. Zeng: Thermal evolution of cobalt hydroxides: A comparative study of their various structural phases. J. Mater. Chem. 8, 2499 (1998).
- 36.
M. Oku and Y. Sato: In-situ x-ray photoelection spectroscopic study of the reversible phase transition between CoO and Co3O4 in oxygen of 10-3 Pa. Appl. Surf. Sci. 55, 37 (1992).
- 37.
A.M. Saib, M. Claeys and E. van Steen: Silica supported cobalt Fischer–Tropsch catalysts: Effect of pore diameter of support. Catal. Today 71, 395 (2002).
- 38.
D.G. Castner, P.R. Watson and I.Y. Chan: X-ray absorption spectroscopy, x-ray photoelectron spectroscopy, and analytical electron microscopy studies of cobalt catalysts. 2. Hydrogen reduction properties. J. Phys. Chem. 94, 819 (1990).
- 39.
A.C. Soares Sabioni and B.J. Wuensch: Grain-boundary diffusion of Co2+ in ZnO (http://web.mit.edu/cmse/www/Wuensch97.pdf, 1997).
- 40.
V.B. Prokpenko, V.S. Gurin, A.A. Alexeenko, V.S. Kulikauskas and D.L. Kovalenko: Surface segregation of transition metals in sol-gel silica films. J. Phys. D: Appl. Phys. 33, 3152 (2000).
- 41.
A. Ramos-Mendoza, H. Tototzintle-Huitle, A. Mendoza-Galvan and J. Gonzalez-Hernandez: Optical and structural properties of sol-gel SiO2 layers containing cobalt. J. Vac. Sci. Technol. A 19, 1600 (2001).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Park, S.M., Ki, W., Yu, J. et al. Sol-gel synthesis of highly dispersed cobalt nanoparticles on silica thin films. Journal of Materials Research 20, 3094–3101 (2005). https://doi.org/10.1557/JMR.2005.0390
Received:
Accepted:
Published:
Issue Date: