Strain rate sensitivity of a nanocrystalline Cu–Ni–P alloy

Abstract

Nanoindentation technique was used to measure the strain rate sensitivity (m) of a nanocrystalline Cu-Ni-P alloy prepared by means of electrodeposition. The m value decreases from 0.034 to 0.018 when the nominal grain size increases from 7 nm to 33 nm. Both m values of the alloy are obviously lower than those of the pure Cu with similar grain size, implying that P segregation at grain boundaries might play a key role in retarding grain boundary activities as compared to pure Cu samples.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. Van Swygenhoven, M. Spaczer and A. Caro: Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni. Acta Mater. 47, 3117 (1999).

    Article  Google Scholar 

  2. 2.

    J. Schiøtz and K.W. Jacobsen: A maximum in the strength of nanocrystalline Cu. Science 301, 1357 (2003).

    Article  Google Scholar 

  3. 3.

    H. Conrad: Grain-size dependence of the flow stress of Cu from millimeters to nanometers. Metall. Mater. Trans. A 35, 2681 (2004).

    Article  Google Scholar 

  4. 4.

    H. Conrad and J. Narayan: Mechanism for grain size softening in nanocrystalline Zn. Appl. Phy. Lett. 81, 2241 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    H. Conrad in High Strength Materials, edited by V.F. Zackey (John Wiley & Sons, New York, 1965).

  6. 6.

    Q. Wei, S. Cheng, K.T. Ramesh and E. Ma: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng. A 381, 71 (2004).

    Article  Google Scholar 

  7. 7.

    R.P. Hibbard Jr. and W.R. Carreker Jr.: Tensile deformation of high-purity Cu as a function of temperature, strain rate, and grain size. Acta Mater 1, 654 (1953).

    Article  Google Scholar 

  8. 8.

    J. Chen, L. Lu and K. Lu Hardness and strain rate sensitivity of Cu over a wide grain size range. (2005, unpublished).

    Google Scholar 

  9. 9.

    H. Lüthy, R.A. White and O.D. Sherby: Grain boundary sliding and deformation mechanism maps. Mater. Sci. Eng. A 39, 211 (1979).

    Article  Google Scholar 

  10. 10.

    R.L. Coble: A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679 (1963).

    Article  Google Scholar 

  11. 11.

    B.N. Lucas and W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 (1999).

    Article  Google Scholar 

  12. 12.

    W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Article  Google Scholar 

  13. 13.

    L. Lu, S.X. Li and K. Lu: An abnormal strain rate effect on tensile behavior in nanocrystalline Cu. Scripta Mater. 45, 1163 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    A.A. Elmustafa, M.F. Tambwe and D.S. Stone Activation volume analysis of plastic deformation in fcc materials using nanoindentation, in Surface Engineering 2002–Synthesis, Characterization and Applications, edited by A. Kumar, W.J. Meng, Y.T. Cheng, J.S. Zabinski, G.L. Doll, and S. Veprek (Mater. Res. Soc. Symp. Proc., 750, Warrendale, PA, 2003), p. Y8.14.1.

  15. 15.

    G.T. Gray III, T.C. Lowe, C.M. Cady, R.Z. Valiev and I.V. Aleksandrov: Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al-4Cu-O.5Zr. Nanostruct Mater 9, 477 (1997).

    CAS  Article  Google Scholar 

  16. 16.

    Y.M. Wang and E. Ma: Temperature and strain rate effects on the strength and ductility of nanostructured Cu. Appl. Phys. Lett. 83, 3165 (2003).

    CAS  Article  Google Scholar 

  17. 17.

    P.S. Follansbee and U.F. Kocks: A constitutive description of the deformation of Cu based on the use of the mechanical threshold stress as an internal state variable. Acta Mater 36, 81 (1988).

    Article  Google Scholar 

  18. 18.

    M. Zehetbauer and V. Seumer: Cold work hardening in stages IV and V of F.C.C. metals—I. Experiments and interpretation. Acta Metall Mater. 41, 577 (1993).

    CAS  Article  Google Scholar 

  19. 19.

    W. Bochniak: Mode of deformation and the Cottrell-Strokes law in F.C.C. single crystals. Acta Metall Mater 43, 225 (1995).

    CAS  Google Scholar 

  20. 20.

    H. Conrad: Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng. A 341, 216 (2003).

    Article  Google Scholar 

  21. 21.

    V.N. Perevezentsev, V.V. Rybin and Chuvil’V.N. deev: The theory of structural superplasticity—II. Accumulation of defects on the intergranular and interphase boundaries. Accomodation of the grain-boundary sliding. The upper bound of the superplastic strain rate. Acta Metall Mater. 40, 895 (1992).

    CAS  Article  Google Scholar 

  22. 22.

    H. Conrad and J. Narayan: On the grain size softening in nanocrystalline materials. Scripta Mater. 42, 1025 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    H. Van Swygenhoven and A. Caro: Plastic behavior of nanophase metals studied by molecular dynamics. Phys. Rev. B 58, 11246 (1998).

    Article  Google Scholar 

  24. 24.

    B. Färber, E. Cadel, A. Menand, G. Schmitz and R. Kirchheim: Phosphorus segregation in nanocrystalline Ni–3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater. 48, 789 (2000).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, J., Shi, Y.N. & Lu, K. Strain rate sensitivity of a nanocrystalline Cu–Ni–P alloy. Journal of Materials Research 20, 2955–2959 (2005). https://doi.org/10.1557/JMR.2005.0387

Download citation