A new method for direct preparation of tin dioxide nanocomposite materials


In the current work, a novel combustion method is demonstrated for the direct synthesis of nanocomposite materials. Specifically doped tin dioxide (SnO2) powders were selected for the demonstration studies due to the key role SnO2 plays in semiconductor gas sensors and the strong sensitivity of doped SnO2 to nanocomposite properties. The synthesis approach combines solid and gas-phase precursors to stage the decomposition and particle nucleation processes. A range of synthesis conditions and four material systems were examined in the study: gold–tin dioxide, palladium–tin dioxide, copper–tin dioxide, and aluminum–tin dioxide. Several additive precursors were considered including four metal acetates and two pure metals. The nanocomposite materials produced were examined for morphology, phase, composition, and lattice spacing using transmission and scanning electron microscopy, x-ray diffractometry, and energy-dispersive spectroscopy. The results using the combustion synthesis approach indicate good control of the nanocomposite properties, such as the average SnO2 crystallite size, which ranged from 5.8 to 17 nm.

This is a preview of subscription content, access via your institution.


  1. 1.

    T. Uematsu, L. Fan, T. Maruyama, N. Ichikuni and S. Shimazu: New application of spray reaction technique to the preparation of supported gold catalysts for environmental catalysis. J. Mol. Catal. A: Chem. 182, 209 (2002).

    Article  Google Scholar 

  2. 2.

    C.N. Afonso, J. Solis, R. Serna, J. Gonzalo, J.M. Ballesterosa and J.C.G. de San: Pulsed laser deposition of nanocomposite thin films for photonic applications. Proc. SPIE Int. Soc. Opt. Eng. 3618, 453 (1999).

    CAS  Google Scholar 

  3. 3.

    Z. Cui and Z. Zhang: Ce-Ni nanoparticles with shell structure for hydrogen storage. Nanostruct. Mater. 7, 355 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    T.A. Miller, S.D. Bakrania, C. Perez and M.S. Wooldridge: Tin dioxide/metal/metal oxide nanocomposites for gas sensor applications. In Functional Nanomaterials, edited by E. Rosenberg and K.E. Geckeler (American Scientific Publishers, Stevenson Ranch, CA) (in press).

  5. 5.

    N. Yamazoe: New approaches for improving semiconductor gas sensors. Sens. Actuators, B 5, 7 (1991).

    CAS  Article  Google Scholar 

  6. 6.

    F.E. Krius, H. Fissan and A. Peled: Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—A review. J. Aerosol Sci. 29, 511 (1998).

    Article  Google Scholar 

  7. 7.

    W. Göpel and K.D. Schierbaum: SnO2 sensors: Current status and future prospects. Sens. Actuators, B 26, 1 (1995).

    Article  Google Scholar 

  8. 8.

    E. Kanazawa, M. Kugishima, K. Shimanoe, Y. Kanmura, Y. Teraoka, N. Miura and N. Yamazoe: Mixed-potential type N2O sensor using stabilized zirconia- and SnO2-based sensing electrode. Sens. Actuators, B 75, 121 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    I. Sayago, J. Gutiérrez, L. Arés, J.I. Robla, M.C. Horrillo, J. Getino, J. Rino and J.A. Agapito: Effect of additives in tin oxide on the sensitivity and selectivity to NOx and CO. Sens. Actuators, B 26, 19 (1995).

    CAS  Article  Google Scholar 

  10. 10.

    P. Siciliano: Preparation, characterisation and applications of thin films for gas sensors prepared by cheap chemical method. Sens. Actuators, B 70, 153 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Bârsan and W. Göpel: Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors. Sens. Actuators, B 70, 87 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    C.G. Borman and R.G. Gordon: Reactive pathways in the chemical vapor deposition of tin oxide films by tetramethyltin oxidation. J. Electrochem. Soc. 136, 3820 (1989).

    CAS  Article  Google Scholar 

  13. 13.

    H. Unuma, H. Tahabatake, K. Watanabe, T. Ogata and M. Sugawara: Preparation of SnO2 thin films by the oxidative-soak-coating method. J. Mater. Sci. Lett. 21, 1241 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    A.K. Mukhopadhyay, P. Mitra, A.P. Chatterjee and H.S. Maiti: Tin dioxide thin film gas sensor. Ceram. Int. 26, 123 (2000).

    CAS  Article  Google Scholar 

  15. 15.

    J. Calderer, P. Molinàs, J. Sueiras, E. Llobet, X. Vilanova, X. Correig, F. Masana and A. Rodríguez: Synthesis and characterization of metal suboxides for gas sensors. Microelectron. Reliab. 40, 807 (2000).

    Article  Google Scholar 

  16. 16.

    Y.S. Choe: New gas sensing mechanism for SnO2 thin-film gas sensors fabricated by using dual ion beam sputtering. Sens. Actuators, B 77, 200 (2001).

    CAS  Article  Google Scholar 

  17. 17.

    V.M. Jiménez, A.R. González-Elipe, J.P. Espinós, A. Justo and A. Fernández: Synthesis of SnO and SnO2 nanocrystalline powders by the gas phase condensation method. Sens. Actuators, B 31, 29 (1996).

    Article  Google Scholar 

  18. 18.

    S. Nicoletti, L. Dori, G.C. Cardinali and A. Parisini: Gas sensors for air quality monitoring: Realization and characterization of undoped and noble metal-doped SnO2 thin sensing films deposited by the pulsed laser ablation. Sens. Actuators, B 60, 90 (1999).

    CAS  Article  Google Scholar 

  19. 19.

    L.M. Cukrov, T. Tsuzuki and P.G. McCormick: SnO2 nanoparticles prepared by mechanochemical processing. Scripta Mater. 44, 1787 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    D. Lindackers, C. Janzen, B. Rellinghaus, E.F. Wassermann and P. Roth: Synthesis of Al2O3 and SnO2 particles by oxidation of metalorganic precursors in premixed H2/O2/Ar low pressure flames. Nanostruct. Mater. 10, 1247 (1998).

    CAS  Article  Google Scholar 

  21. 21.

    W. Zhu and S.E. Pratsinis: Synthesis of SiO2 and SnO2 particles in diffusion flame reactors. AIChE J. 43, 2657 (1997).

    CAS  Article  Google Scholar 

  22. 22.

    G. Skandan, N. Glumac, Y.-J. Chen, F. Cosandey, E. Heims and B.H. Kear: Low-pressure flame deposition of nanostructured oxide films. J. Am. Ceram. Soc. 81, 2753 (1998).

    CAS  Article  Google Scholar 

  23. 23.

    M.S. Wooldridge: Gas-phase combustion synthesis of particles. Prog. Energy Combust. Sci. 24, 63 (1998).

    CAS  Article  Google Scholar 

  24. 24.

    S.E. Pratsinis: Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 24, 197 (1998).

    CAS  Article  Google Scholar 

  25. 25.

    R.M. Laine, R. Baranwal, T. Hinklin, D. Treadwell, A. Sutorik, C. Bickmore, K. Waldner and S.S. Neo: Making nanosized oxide powders by flame spray pyrolysis, in Novel Synthesis and Processing of Ceramics, edited by H. Suzuki, K. Komeya, and K. Uematsu (Key Engineering Materials Trans. Tech. Publ. Ltd., Zurich, Switzerland, 1998), p. 17.

  26. 26.

    R.M. Laine, K. Waldner, C. Bickmore and D.R. Treadwell Ultrafine powders by flame spray pyrolysis. U.S. Patent No. 5 958 361, September 28, 1999.

    Google Scholar 

  27. 27.

    G. Skandan, N. Glumac, Y.J. Chen, F. Cosandey, E. Heims and B.H. Kear: Low-pressure flame deposition of nanostructured oxide films. J. Am. Ceram. Soc. 81, 2753 (1998).

    CAS  Article  Google Scholar 

  28. 28.

    C. Bittencourt, E. Llobet, P. Ivanov, X. Correig, X. Vilanova, J. Brezmes, J. Hubalek, K. Malysz, J.J. Pireaux and J. Calderer: Influence of the doping method on the sensitivity of Pt-doped screen-printed SnO2 sensors. Sens. Actuators, B 97, 67 (2004).

    CAS  Article  Google Scholar 

  29. 29.

    A. Cabot, A. Diéguez, A. Romano-Rodríguez, J.R. Morante and N. Bârsan: Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances: Where and how stay the catalytic atoms. Sens. Actuators, B 79, 98 (2001).

    CAS  Article  Google Scholar 

  30. 30.

    N. Sergent, P. Gélin, L. Périer-Cambry, H. Praliaud and G. Thomas: Preparation and characterisation of high surface area stannic oxides: Structural, textural and semiconducting properties. Sens. Actuators, B 84, 176 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    J. Zhang and L. Gao: Synthesis and characterization of nanocrystalline tin oxide by sol-gel method. J. Solid State Chem. 177, 1425 (2004).

    CAS  Article  Google Scholar 

  32. 32.

    C. Xu, J. Tamaki, N. Miura and N. Yamazoe: Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators, B 3, 147 (1991).

    CAS  Article  Google Scholar 

  33. 33.

    G. Zhang and M. Liu: Effect of particle size and dopant on properties of SnO2-based gas sensors. Sens. Actuators, B 69, 144 (2000).

    CAS  Article  Google Scholar 

  34. 34.

    M.S. Wooldridge, P.V. Torek, M.T. Donovan, D.L. Hall, T.A. Miller, T.R. Palmer and C.R. Schrock: An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner. Combust. Flame 131, 98 (2002).

    CAS  Article  Google Scholar 

  35. 35.

    D.L. Hall, P.V. Torek, C.R. Schrock, T.R. Palmer and M.S. Wooldridge: Gas-phase combustion synthesis of tin oxide nanoparticles. Proceedings of the 2001 International Symposium on Metastable, Mechanically Alloyed, and Nanocrystalline Materials; (Trans. Tech. Publ., Zurich, Switzerland, 2002), p. 347.

    Google Scholar 

  36. 36.

    D.L. Hall, A.A. Wang, K.T. Joy, T.A. Miller and M.S. Wooldridge: Combustion synthesis and characterization of nanocrystalline tin and tin oxide (SnOx, x = 0–2) particles. J. Am. Ceram. Soc. 87, 2033 (2004).

    CAS  Article  Google Scholar 

  37. 37.

    J. Ma Soot formation during coal pyrolysis. Ph.D. Dissertation, Chemical Engineering Department, Brigham Young University, Salt Lake City, UT, 1996.

    Google Scholar 

  38. 38.

    S. Niksa, R.E. Mitchell, K.R. Hencken and D.A. Tichenor: Optically determined temperatures, sizes, and velocities of individual carbon particles under typical combustion conditions. Combust. Flame 60, 183 (1985).

    CAS  Article  Google Scholar 

  39. 39.

    T.A. Miller Combustion synthesis of metal/metal oxide nanocomposite materials. Ph.D. Dissertation, University of Michigan, Ann Arbor, MI.

  40. 40.

    T.A. Miller, C.H. Chu and M.S. Wooldridge Demonstration of a particle feed system for combustion synthesis of metal and metal oxide materials, Presented at the 2003 Technical Meeting of the Eastern States Section of the Combustion Institute, State College, PA, October, 2003.

    Google Scholar 

  41. 41.

    T.A. Miller, S.D. Bakrania, C. Perez and M.S. Wooldridge: An experimental investigation of the use of solid-phase precursors for direct synthesis of doped tin dioxide nanocomposite powders. Combust. Flame 2005 (submitted).

    Google Scholar 

  42. 42.

    J.P.S.P. Fileswder Diffraction 21-1250, 4-784, 5-661, 5-667, 5-681. International Centre for Diffraction Data: Newton Square, PA, 1990.

    Google Scholar 

  43. 43.

    D.L. Hall Gas-phase combustion synthesis of nanocrystalline tin and tin oxide particles. M.S. Thesis, Mechanical Engineering Department, University of Michigan, Ann Arbor, MI, 2001.

    Google Scholar 

  44. 44.

    N.R. Schreiber Jr. and H.D. Wilk: Optical properties of gold in acetate glasses. J. Non-Cryst. Solids 239, 192 (1998).

    Article  Google Scholar 

  45. 45.

    K. Ikohura and J. Watson: The Stannic Oxide Gas Sensor (CRC Press, Boca Raton, FL, 1994).

    Google Scholar 

  46. 46.

    C. Bittencourt, E. Llobet, P. Ivanov, X. Correig, X. Vilanova, J. Brezmes, J. Hubalek, K. Malysz, J.J. Pireaux and J. Calderer: Influence of the doping method on the sensitivity of Pt-doped screen-printed SnO2 sensors. Sens. Actuators, B 97, 67 (2004).

    CAS  Article  Google Scholar 

  47. 47.

    M. Epifani, M. Alvisi, L. Mirenghi, G. Leo, P. Siciliano and L. Vasanelli: Sol-gel processing and characterization of pure and metal-doped SnO2 thin films. J. Am. Ceram. Soc. 84, 48 (2001).

    CAS  Article  Google Scholar 

  48. 48.

    E. Makino and T. Shibata: Micromachining compatible metal patterning technique using localized decomposition of an organometallic compound by laser irradiation. J. Micromech. Microeng. 8, 177 (1998).

    CAS  Article  Google Scholar 

  49. 49.

    CRC Handbook of Chemistry and Physics, edited by D.R. Lide (CRC Press, Boca Raton, FL, 1997).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. S. Wooldridge.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miller, T.A., Bakrania, S.D., Perez, C. et al. A new method for direct preparation of tin dioxide nanocomposite materials. Journal of Materials Research 20, 2977–2987 (2005). https://doi.org/10.1557/JMR.2005.0375

Download citation