Effect of processing conditions on the piezoelectric properties of sol-gel derived Pb(Zr,Ti)O3 films for micromechanical applications


Lead zirconate titanate (PZT) films of composition close to the morphotropic phase boundary were deposited onto standard Si/SiO2/Ti/Pt substrates using a modified sol-gel process. The preparation conditions were optimized to obtain high-quality films at sufficiently low temperature (Ta = 500 °C). The dielectric, ferroelectric, and piezoelectric properties of the films were then measured as a function of the annealing temperature and the number of distillations to evaluate their suitability for micromechanical applications. The maximum values of the longitudinal charge and voltage piezoelectric coefficients were d33 ∼ 65 pm/V and g33 ∼ 4 × 10−3 Vm/N, respectively. The results indicate that the piezoelectric properties improved and became saturated with increasing number of distillations and are almost independent on Ta. Only moderate decrease of the piezoelectric response with frequency suggests that the investigated PZT films can be used in high-frequency piezoelectric applications. The results are discussed in terms of the microstructure and interface effects on the piezoelectric deformation in ferroelectric thin films.

This is a preview of subscription content, access via your institution.


  1. 1.

    O. Auciello, J.F. Scott, and R. Ramesh: The physics of the ferroelectric memories. Phys. Today 51, 22 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    R.E. Jones and S.B. Desu: Process integration for nonvolatile ferroelectric: Memory fabrication. MRS Bull. 21, 55 (1996).

    CAS  Article  Google Scholar 

  3. 3.

    C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, and J.F. Scott: Fatigue-free ferroelectric capacitors with platinumelectrodes. Nature 374, 627 (1995).

    Article  Google Scholar 

  4. 4.

    M. Boucinha, V. Chu, and J.P. Conde: Thin film micromachined structures for large-area applications. J. Non-Cryst. Solids 266, 1340 (2000).

    Article  Google Scholar 

  5. 5.

    B.A. Tuttle and R.W. Schwartz: Solution deposition of ferroelectric thin films. MRS Bull. 21, 49 (1996).

    CAS  Article  Google Scholar 

  6. 6.

    K. Maki, N. Soyama, K. Nagamine, S. Mori, and K. Ogi: Low temperature crystallization of sol-gel derived Pb(Zr0.4Ti0.6)O3 thin films. Jpn. J. Appl. Phys. 40, 5533 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    A. Wu, P.M. Vilarinho, I.M. Reaney, I.M. Salvado, and J.L. Baptista: Kinetic aspects of the formation of seeded lead zirconate titanate thin films. Integr. Ferroelectr. 30, 261 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    T.L. Ren, L.T. Zhang, L.T. Liu, and Z.J. Li: Silicon based Pb-TiO3/Pb(Zr,Ti)O3/PbTiO3 sandwich structure. Jpn. J. Appl. Phys., 40, 2363 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    K. Maki, B.T. Liu, H. Vu, V. Nagarajan, R. Ramesh, Y. Fujimori, T. Nakamura, and H. Takasu: Controlling crystallization of Pb(Zr, Ti)O3 thin films on IrO2 electrodes at low temperature through interface engineering. Appl. Phys. Lett. 82, 1263 (2003).

    CAS  Article  Google Scholar 

  10. 10.

    I.D. Kim and H.G. Kim: Characterization of highly preferred Pb(Zr,Ti)O3 thin films on La0.5Sr0.5CoO3 and LaNi0.6Co0.4O3 electrodes prepared at low temperature. Jpn. J. Appl. Phys. 40, 2357 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    H. Suzuki, T. Koizumi, Y. Kondo, and S. Kaneko: Lowtemperature processing of Pb(Zr0.53Ti0.47)O3 thin film from stable precursor sol. J. Europ. Ceram. Soc. 19, 1397 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    G. Asano, H. Morioka, and H. Funakubo: Fatigue-free RuO2/Pb(Zr,Ti)O3/RuO2 capacitor prepared by metalorganic chemical vapor deposition at 395°C. Appl. Phys. Lett. 83, 5506 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    J. Pérez, P.M. Vilarinho, and A.L. Kholkin: High-quality PbZr0.52Ti0.48O3 films prepared by modified sol-gel route at low temperature. Thin Solid Films 449, 20 (2004).

    Article  Google Scholar 

  14. 14.

    K. Budd, S. Dey, and D. Payne: Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Br. Ceram. Proc. 36, 107 (1985).

    CAS  Google Scholar 

  15. 15.

    W.Y. Pan and L.E. Cross: A sensitive double beam laser interferometer for studying high-frequency piezoelectric and electrostrictive strains. Rev. Sci. Instrum. 60, 2701 (1989).

    CAS  Article  Google Scholar 

  16. 16.

    A.L. Kholkin, Ch. Wütchrich, D.V. Taylor, and N. Setter: Interferometric measurements of electric field-induced displacements in piezoelectric thin films. Rev. Sci. Instrum. 67, 1935 (1996).

    CAS  Article  Google Scholar 

  17. 17.

    P. Gerber, A. Roelofs, O. Lohse, C. Kügeler, S. Tiedke, U. Böttger, and R. Waser: Short-time piezoelectric measurements in ferroelectric thin films using a double-beam laser interferometer. Rev. Sci. Instrum. 74, 2613 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    B.A. Tuttle, T.J. Garino, J.A. Voight, T.J. Headley, D. Dimos, and M.O. Eatough: In Science and Technology of Electroceramic Thin Films, edited by O. Auciello and R. Waser, (Kluwer, Netherlands), p. 117.

  19. 19.

    F. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, Z.L. Xie, and K.J. Hemker: Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 89, 1336 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    P.V. Burmistrova, A.S. Sigov, A.L. Vasiliev, K.A. Vorotilov, and O.M. Zhigalina: Effect of lead content on the microstructure and electrical properties of sol-gel PZT thin films. Ferroelectrics 271, 1641 (2002).

    Article  Google Scholar 

  21. 21.

    A.L. Kholkin, E.K. Akdogan, A. Safari, P-F. Chauvy, and N. Setter: Characterization of the effective electrostriction coefficients in ferroelectric thin films. J. Appl. Phys. 89, 8066 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    A.L. Kholkin, A.K. Tagantsev, E.L. Colla, D.V. Taylor, and N. Setter: Piezoelectric and dielectric aging in Pb(Zr,Ti)O3 thin films and bulk ceramics. Integr. Ferroelectr. 15, 317 (1997).

    CAS  Article  Google Scholar 

  23. 23.

    R. Bruchhaus, D. Pitzer, R. Primig, W. Wersing, and Y. Xu: Deposition of self-polarized PZT films by planar multi-target sputtering. Integr. Ferroelectr. 14, 141 (1997).

    CAS  Article  Google Scholar 

  24. 24.

    A.L. Kholkin, K.G. Brooks, D.V. Taylor, S. Hiboux, and N. Setter: Self-polarization effect in Pb(Zr,Ti)O3 thin films. Integr. Ferroelectr. 22, 1045 (1998).

    Google Scholar 

  25. 25.

    T. Itoh and T. Saga: Self-excited force-sensing microcantilevers with piezoelectric thin films for dynamic scanning force microscopy. Sens. Actuators A 54, 477 (1996).

    CAS  Article  Google Scholar 

  26. 26.

    A.L. Kholkin, E.L. Colla, A.K. Tagantsev, and N. Setter: Fatigue of piezoelectric properties in Pb(Zr,Ti)O3 films. Appl. Phys. Lett. 68, 2577 (1996).

    CAS  Article  Google Scholar 

  27. 27.

    A.L. Kholkin, A.K. Tagantsev, E.L. Colla, D.V. Taylor, and N. Setter: Piezoelectric and dielectric aging in Pb(Zr,Ti)O3 thin films and bulk ceramics. Integr. Ferroelectr. 15, 317 (1997).

    CAS  Article  Google Scholar 

  28. 28.

    A. Kholkin, E. Colla, K. Brooks, P. Muralt, M. Kohli, T. Maeder, D. Taylor, and N. Setter: Interferometric study of piezoelectric degradation in ferroelectric thin films. Microelectron. Eng. 29, 261 (1995).

    CAS  Article  Google Scholar 

  29. 29.

    A.L. Kholkin, D.V. Taylor, and N. Setter: Poling effect on the piezoelectric properties of lead zirconate titanate thin films, in Proc. IEEE Int. Symp. Appl. Ferroelectrics (1998), p. 69.

    Google Scholar 

  30. 30.

    J.F. Shepard, F. Chu, I. Kanno, and S. Trolier-McKinstry: Characterization and aging response of the d31 piezoelectric coefficient of lead zirconate titanate thin films. J. Appl. Phys. 85, 6711 (1999).

    CAS  Article  Google Scholar 

  31. 31.

    K. Lefki and G.J.M. Dormans: Measurement of piezoelectric coefficients of ferroelectric thin films. J. Appl. Phys. 76, 1764 (1994).

    Article  Google Scholar 

  32. 32.

    U. Selvaraj, K. Brooks, A.V. Prasadarao, S. Komarnemi, R. Roy, and L.E. Cross: Sol-gel fabrication of Pb(Zr0.52Ti0.48)O3 thinfilms using lead acetylacetonate as the lead source. J. Am. Ceram. Soc. 76, 1441 (1993).

    CAS  Article  Google Scholar 

  33. 33.

    J.O. Olowalafe, R.E. Jones, A.C. Campbell, R.I. Hedge, C.J. Mogab, and R.B. Gregory: Effects of anneal ambients and Pt thickness on Pt/Ti and Pt/Ti/TiN interfacial reactions. J. Appl. Phys. 73, 1764 (1993).

    Article  Google Scholar 

  34. 34.

    C.K. Kwok and S.B. Desu: Formation kinetics of PbZrxTi1−xO3 thin-films. J. Mater. Res. 9, 1728 (1994).

    CAS  Article  Google Scholar 

  35. 35.

    J.G.E. Gardeniers, Z.M. Rittersma, and G.J. Burger: Preferred orientation and piezoelectricity in sputtered ZnO films. J. Appl. Phys. 83, 7844 (1998).

    CAS  Article  Google Scholar 

  36. 36.

    J-F. Li, D. Viehland, C.D.E. Lakeman, and D.A. Payne: Frequencydependent electromechanical properties for sol-gel deposited ferroelectric lead-zirconate-titanate thin-layers-thickness and processing effects. J. Mater. Res. 10, 1435 (1995).

    CAS  Article  Google Scholar 

  37. 37.

    D. Damjanovic: Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82, 1788 (1997).

    CAS  Article  Google Scholar 

  38. 38.

    T. Yamagouchi and K. Hamano: Piezoelectric relaxation in ferroelectric AGNA(NO2)2. J. Phys. Soc. Jpn. 50, 3956 (1981).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. Pérez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pérez, J., Vilarinho, P.M., Kholkin, A.L. et al. Effect of processing conditions on the piezoelectric properties of sol-gel derived Pb(Zr,Ti)O3 films for micromechanical applications. Journal of Materials Research 20, 1428–1435 (2005). https://doi.org/10.1557/JMR.2005.0203

Download citation