Shape and internal structure of silver nanoparticles embedded in glass


The structural characteristics of silver nanoparticles embedded in glass by various routes of fabrication were studied in detail using high-resolution electron microscopy to find out if they are influenced by interaction with the surrounding glass matrix. Besides the formation conditions, the strength of the interaction between metal and glass governs the size-dependent changes of lattice spacings in such nanoparticles. However, determination of these changes is not straightforward because of complicated particle configurations and the interference nature of the lattice imaging technique. Imaging of lattice plane fringes and careful diffractogram analysis allowed the exclusion of any kind of tetragonal lattice distortion or transformation to hexagonal lattice type that may be deduced at first sight. Instead, the formation of twin faults in these nanoparticles turned out to be the essential structural feature and the main source of confusion about the lattice structure observed. The variety of particle forms is comparable to particles supported on oxide carriers. It is composed of single-crystalline particles of nearly cuboctahedron shape, particles containing single twin faults, multiple twinned particles containing parallel twin lamellae, and multiple twinned particles composed of cyclic twinned segments arranged around axes of 5-fold symmetry. The more twin planes involved in the particle composition, the more complicated is the interpretation of lattice spacings and lattice fringe patterns due to superposition of several twin segments.

This is a preview of subscription content, access via your institution.


  1. 1.

    C. Mohr, H. Hofmeister, and P. Claus: The influence of the real structure of gold catalysts in the partial hydrogenation of acrolein. J. Catal. 213, 86 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    W.P. Cai, H. Hofmeister, and M. Dubiel: Importance of lattice contraction in surface plasmon resonance shift for free and embedded silver particles. Eur. Phys. J. D 13, 245 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    K.J. Berg, A. Berger, and H. Hofmeister: Small silver particles in glass surface layers produced by sodium-silver ion exchange— Their concentration and size depth profile. Z. Phys. D 20, 309 (1991).

    CAS  Article  Google Scholar 

  4. 4.

    A. Berger, K.J. Berg, and H. Hofmeister: Aggregates of small silver particles in surface layers of glasses–electron microscopy and optical microspectroscopy. Z. Phys. D 20, 313 (1991).

    CAS  Article  Google Scholar 

  5. 5.

    P.W. Wang: Formation of silver colloids in silver ion-exchanged soda-lime glasses during annealing. Appl. Surf. Sci. 120, 291 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    A. Meldrum, R.F. Haglund, Jr., L.A. Boatner, and C.W. White: Nanocomposite materials formed by ion implantation. Adv. Mater. 13, 1431 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    H. Hofmeister, M. Dubiel, H. Goj, and S. Thiel: Microstructural investigation of colloidal silver embedded in glass. J. Microsc. 177, 331 (1995).

    CAS  Article  Google Scholar 

  8. 8.

    M. Dubiel, H. Hofmeister, E. Schurig, E. Wendler, and W. Wesch: On the stress state of silver nanoparticles in ion-implanted silicate glasses. Nuclear Instr. Meth. Phys. Res. B 166-167, 871 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    M. Dubiel, H. Hofmeister, and E. Schurig: Interface effects at nanosized silver particles in glass. Rec. Res. Devel. In Appl. Phys. 1, 69 (1998).

    CAS  Google Scholar 

  10. 10.

    M. Klimenkov, S. Nepijko, H. Kuhlenbeck, M. Bäumer, R. Schlögl, and H-J. Freund: The structure of Pt-aggregates on a supported thin aluminum oxide film in comparison with unsupported alumina: A transmission-electron-microscopy study. Surf. Sci. 391, 27 (1997).

    CAS  Article  Google Scholar 

  11. 11.

    L.D. Marks: Experimental studies of small particle structures. Rep. Prog. Phys. 57, 603 (1994).

    CAS  Article  Google Scholar 

  12. 12.

    S. Iijima: Electron microscopy of small particles. J. Electron Microsc. 34, 249 (1985).

    CAS  Google Scholar 

  13. 13.

    S. Iijima and T. Ichihashi: Stacking disorder and twin deformation in small metal clusters. Mater. Trans., JIM. 31, 582 (1990).

    CAS  Article  Google Scholar 

  14. 14.

    J.M. Montejano-Carrizales, J.L. Rodríguez-Lopéz, C. Guiterrez-Wing, M. Miki-Yoshida, and M. José-Yacaman: Crystallography and shape of nanoparticles and clusters, in Encyclopedia of Nanoscience and Nanotechnology, Vol. 2, edited by H.S. Nalwa (American Scientific, Stevenson Ranch, CA, 2004), p. 237.

    CAS  Google Scholar 

  15. 15.

    H. Hofmeister: Fivefold twinned nanoparticles, in Encyclopedia of Nanoscience and Nanotechnology, Vol. 3, edited by H.S. Nalwa (American Scientific, Stevenson Ranch, CA, 2004), p. 431.

    CAS  Google Scholar 

  16. 16.

    J. Urban: Structure of nanoclusters by high-resolution electron microscopy, in Encyclopedia of Nanoscience and Nanotechnology, Vol. 10, edited by H.S. Nalwa (American Scientific, Stevenson Ranch, CA, 2004), p. 161.

    CAS  Google Scholar 

  17. 17.

    C.Y. Yang: Crystallography of decahedral and icosahedral particles I. Geometry of twinning. J. Cryst. Growth 47, 274 (1979).

    CAS  Article  Google Scholar 

  18. 18.

    Y. Wu, Q. Chen, M. Takeguchi, and K. Furuya: High-resolution transmission-electron-microscopy study on the anomalous structure of lead nanoparticles with UHV-MBE-TEM system. Surf. Sci. 462, 203 (2000).

    CAS  Article  Google Scholar 

  19. 19.

    M. José-Yacaman, R. Herrera, A. Gómez, S. Tehuacanero, and P. Schabes-Retchkiman: Decagonal and hexagonal structures in small gold particles. Surf. Sci. 237, 248 (1990).

    Article  Google Scholar 

  20. 20.

    P-A. Buffat, M. Flüeli, R. Spycher, P. Stadelmann, and J-P. Borel: Crystallographic structure of small gold particles studied by highresolution electron microscopy. Faraday Discuss. 92, 173 (1991).

    CAS  Article  Google Scholar 

  21. 21.

    M. Dubiel, S. Brunsch, W. Seifert, H. Hofmeister, and G.L. Tan: Stress state of silver nanoparticles embedded in a silicate glass matrix investigated by HREM and EXAFS spectroscopy. Eur. Phys. J. D 16, 229 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    M. Dubiel, H. Hofmeister, G.L. Tan, K-D. Schicke, and E. Wendler: Silver diffusion and precipitation in glass by ion implantation. Eur. Phys. J. D 24, 361 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    W. Rasband: NIH Image public domain software, U.S. National Institute of Health, Bethesda, MD (

  24. 24.

    P. Claus and H. Hofmeister: Electron microscopy and catalytic study of silver catalysts: Structure sensitivity of the hydrogenation of crotonaldehyde. J. Phys. Chem. B 103, 2766 (1999).

    CAS  Article  Google Scholar 

  25. 25.

    D.W. Pashley and M.J. Stowell: Electron microscopy and diffraction of twinned structures in evaporated films of gold. Philos. Mag. 8, 1605 (1963).

    CAS  Article  Google Scholar 

  26. 26.

    H. Kohno, N. Ozaki, H. Yoshida, K. Tanaka, and S. Takeda: Misleading fringes in TEM images and diffraction patterns of Si nanocrystallites. Cryst. Res. Technol. 38, 1082 (2003).

    CAS  Article  Google Scholar 

  27. 27.

    H. Hofmeister, S.A. Nepijko, D.N. Ievlev, W. Schulze, and G. Ertl: Composition and lattice structure of fivefold twinned nanorods of silver. J. Cryst. Growth 234, 773 (2002).

    CAS  Article  Google Scholar 

  28. 28.

    A. Renou and J.M. Penisson: Direct atomic imaging in small multiply twinned palladium particles. J. Cryst. Growth 78, 357 (1986).

    CAS  Article  Google Scholar 

  29. 29.

    K. Koga and K. Sugawara: Population statistics of gold nanoparticle morphologies: Direct determination by HREM observations. Surf. Sci. 529, 23 (2003).

    CAS  Article  Google Scholar 

  30. 30.

    F. Baletto, C. Mottet, and R. Fernando: Microscopic mechanism of the growth of metastable silver icosahedra. Phys. Rev. B 63, 155408 (2001).

    Article  Google Scholar 

  31. 31.

    S.A. Nepijko, H. Hofmeister, H. Sack-Kongehl, and R. Schlögl: Multiply twinned particles beyond the icosahedron. J. Cryst. Growth 213, 129 (2000).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to H. Hofmeister.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hofmeister, H., Tan, G.L. & Dubiel, M. Shape and internal structure of silver nanoparticles embedded in glass. Journal of Materials Research 20, 1551–1562 (2005).

Download citation