Preparation of colloidal bismuth particles in polyols

Abstract

Nano-and micrometer size spherical bismuth particles were prepared by reducing bismuth salts in simple and mixed polyols at elevated temperatures. In general, the conversion to metallic bismuth was preceded by the formation, at intermediate temperatures, of bismuth-polyol compounds. By changing the type of bismuth salt, the composition of the polyol mixture, and the temperature of the process, these precursors were successfully converted into spherical bismuth particles. It was found that the reduction process proceeds only if the temperature of the polyol exceeds the values at which the intermediate bismuth-polyol are stable, which was determined to be around 220 °C.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Z. Mei and J.W. Morris: Characterization of eutectic tin-bismuth solder joints. J. Electron. Mater. 21, 599 (1992).

    CAS  Article  Google Scholar 

  2. 2.

    W.J. Tomlinson and I. Collier: The mechanical properties and microstructures of copper and brass joints soldered with eutectic tin-bismuth solder. J. Mater. Sci. 22, 1835 (1987).

    CAS  Article  Google Scholar 

  3. 3.

    J. Eickmans, L. Leenders, J. Lamotte, K. Dierksen, and W. Jacobsen: Mastertool: A new dry phototool in the production of printed circuit boards. Circuit World 22, 26 (1996).

    Article  Google Scholar 

  4. 4.

    C.F. Gallo, B.S. Chandrasekhar, and P.H. Sutter: Transport properties of bismuth single crystals. J. Appl. Phys. 34, 144 (1963).

    CAS  Article  Google Scholar 

  5. 5.

    M.S. Dresselhaus, Z. Zhang, X. Sun, J. Ying, J.P. Heremans, G. Dresselhaus, and G. Chen: Prospects for bismuth nanowires as thermoelectrics, in Thermoelectric Materials 1998—The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon, Jr. (Mater. Res. Soc. Symp. Proc. 545, Warrendale, PA, 1990), p. 215.

    Google Scholar 

  6. 6.

    C.A. Hoffman, J.R. Meyer, F.J. Bartoli, A.D. Venere, X.J. Yi, C.L. Hou, C.A. Wang, and J.B. Ketterson: Semimetal-tosemiconductor transition in bismuth thin films. Phys. Rev. B48, 11431 (1993).

    Article  Google Scholar 

  7. 7.

    T.D. Golding, J.A. Dura, H. Wang, J.T. Zborowsky, A. Vigilante, H.C. Chen, J.H. Miller, and J.R. Meyer: Investigation of Sb/GaSb multilayer structures for potential application as an indirect narrow-bandgap material. Semicond. Sci. Technol. 8, S117 (1993).

    CAS  Article  Google Scholar 

  8. 8.

    J.H. Mangez, J-P. Issi, and J. Heremans: Transport properties of bismuth in quantizing magnetic fields. Phys. Rev. B 14, 4381 (1976).

    CAS  Article  Google Scholar 

  9. 9.

    F.Y. Yang, K. Liu, K. Hong, D.H. Reich, P.C. Searson, and C.L. Chein: Large magnetoresistance of electrodeposited singlecrystal bismuth thin films. Science 284, 1335 (1999).

    CAS  Article  Google Scholar 

  10. 10.

    F.Y. Wang, K. Liu, C.L. Chien, and P.C. Searson: Large magnetoresistance and finite size effects in electrodeposited single crystal bismuth thin films. Phys. Rev. Lett. 82, 3328 (1999).

    Article  Google Scholar 

  11. 11.

    E.E. Foos, R.M. Stroud, A.D. Berry, A.W. Snow, and J.P. Armistead: Synthesis of nanocrystalline bismuth in reverse micelles. J. Am. Chem. Soc. 122, 7114 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    J. Fang, K.L. Stokes, J.A. Wiemann, W.L. Zhou, J. Dai, F. Chen, and C.J. O’Connor: Microemulsion-processed bismuth nanoparticles. Mater. Sci. Eng. B83, 254 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    S. Jiang, Y-H. Huang, F. Luo, and C-H. Yan: Synthesis of bismuth with various morphologies by electrodeposition. Inorg. Chem. Comm. 6, 781 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    K. Wegner, B. Walker, S. Tsantilis, and S.E. Pratsinis: Design of metal nanoparticle synthesis by vapor flow condensation. Chem. Eng. Sci. 57, 1753 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    C.G. Granqvist and R.A. Buhrman: Ultrafine metal particles. J. Appl. Phys. 47, 2200 (1976).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Zhao, Z. Zhang, and H. Dang: A simple way to prepare bismuth nanoparticles. Mater. Lett. 58, 790 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    F. Fiévet: Polyol process, in Fine Particles. Synthesis, Characterization and Mechanisms of Growth, edited by T. Sugimoto (Marcel Dekker, New York, NY, 2000), pp. 460–496.

    Google Scholar 

  18. 18.

    F. Fiévet, J.P. Lagier, and M. Figlarz: Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bull. 14(12), 29 (1989).

    Article  Google Scholar 

  19. 19.

    F. Fiévet, J.P. Largier, B. Blin, B. Beaudoin, and M. Figlarz: Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32/33, 198 (1989).

    Article  Google Scholar 

  20. 20.

    C. Ducamp-Seanguesa, R. Herrera-Urbina, and M. Figlarz: Synthesis and characterization of fine and monodisperse silver particles of uniform shape. J. Solid State Chem. 100, 272 (1992).

    Article  Google Scholar 

  21. 21.

    L.K. Kurihara, G.M. Chow, and P.E. Schoen: Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct. Mater. 6, 607 (1995).

    Article  Google Scholar 

  22. 22.

    H-O. Jungk and C. Feldmann: Polyol mediated synthesis of sub-micrometer Bi2O3 particles. J. Mater. Sci. 36, 297 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    Y. Wang and Y. Xia: Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low meltingpoint metals. Nano Lett. 4, 2047 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    T. Shono Y. Matsumura, T. Hashimoto, K. Hibino, H. Hamaguchi, and T. Aoki: Electroorganic chemistry. XXII. Novel anodic cleavage of glycols to carbonyl compounds. J. Am. Chem. Soc. 97, 2546 (1975).

    CAS  Article  Google Scholar 

  25. 25.

    D.V. Goia, Z. Crnjak-Orel, and E. Matijevic: Conversion of uniform colloidal Cu2O spheres to copper in polyols. J. Mater. Res. 18, 4 (2003).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Corina Goia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goia, C., Matijevic´, E. & Goia, D.V. Preparation of colloidal bismuth particles in polyols. Journal of Materials Research 20, 1507–1514 (2005). https://doi.org/10.1557/JMR.2005.0194

Download citation