Influence of zirconia sol-gel coatings on the fracture strength of brittle materials


In this work, the effect of a sol-gel ZrO2–3 mol% Y2O3 thin film on the fracture properties of a variety of brittle substrates was investigated. The results suggest that the film does not have any appreciable influence on the fracture behavior of crystalline substrates but dramatically affects the fracture properties of amorphous layers. In particular, a significant reduction of average fracture strength and a major increase of the Weibull modulus were observed on coated glassy slides. The origin of such variations is attributed to the generation of a homogeneous flaw population in the vitreous substrates, and the possible mechanisms for the production of flaws are analyzed. Implications of these results for the practical use of coated glassy layers are discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. Shane and M.I. Mecartney: Sol-gel synthesis of zirconia barrier coatings. J. Mater. Sci. 25, 1537 (1990).

    CAS  Article  Google Scholar 

  2. 2.

    Q. Zhang, X. Li, J. Shen, G. Wu, J. Wang, and L. Chen: ZrO2 thin films and ZrO2/SiO2 optical reflection filter deposited by sol-gel method. Mater. Lett. 45, 311 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    A. Baraldi, R. Capelletti, M. Casalboni, C. Mora, M. Pavesi, R. Pizzoferrato, P. Prosposito, and F. Sarcinelli: Effects of composition and catalyst on the optical properties of ZrO2-based Ormosil films. J. Non-Cryst. Solids 317, 231 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    D.R. Uhlmann, T. Suratwala, K. Davidson, J.M. Boulton, and G. Teowee: Sol-gel derived coatings on glass. J. Non-Cryst. Solids 218, 113 (1997).

    CAS  Article  Google Scholar 

  5. 5.

    C.J. Brinker and G.W. Scherer: Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1989).

    Google Scholar 

  6. 6.

    J.D. Wright and N.A.J.M. Sommerdijk: Sol-Gel Materials Chemistry and Applications (Taylor and Francis, London, U.K., 2001).

    Google Scholar 

  7. 7.

    R. Caruso, A. Díaz-Parralejo, P. Miranda, and F. Guiberteau: Controlled preparation and characterization of multilayer sol-gel zirconia dip-coatings. J. Mater. Res. 16, 2391 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    A. Díaz-Parralejo, R. Caruso, A.L. Ortiz, and F. Guiberteau: Densification and porosity evaluation of ZrO2–3 mol% Y2O3 sol-gel thin films. Thin Solid Films 458, 92 (2004).

    Article  Google Scholar 

  9. 9.

    M. Boulouz, A. Boulouz, A. Giani, and A. Boyer: Influence of substrate temperature and target composition on the properties of yttria-stabilized zirconia thin films grown by r.f. reactive magneto sputtering. Thin Solid Films 323, 85 (1998).

    CAS  Article  Google Scholar 

  10. 10.

    E. Sanchez-González, P. Miranda, A. Diaz-Parralejo, A. Pajares, and F. Guiberteau: Effect of sol-gel thin coatings on the fracture strength of glass. J. Mater. Res. 19, 896 (2004).

    Article  Google Scholar 

  11. 11.

    B.D. Fabes and D.R. Uhlmann: Strengthening of glass by sol-gel coatings. J. Am. Ceram. Soc. 73, 978 (1990).

    CAS  Article  Google Scholar 

  12. 12.

    F.H. Wang, R.J. Hand, B. Ellis, and A.B. Seddon: Glass strengthening using epoxy coatings. Phys. Chem. Glasses 36, 201 (1995).

    Google Scholar 

  13. 13.

    H-W. Kim, Y. Deng, P. Miranda, A. Pajares, D.K. Kim, H-E. Kim, and B.R. Lawn: Effect of flaw state on the strength of brittle coatings on soft substrates. J. Am. Ceram. Soc. 84, 2377 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    J.G.R. Kingston and R.J. Hand: Strengthening mechanism of epoxy based coatings on glass. Phys. Chem. Glasses 41, 1 (2000).

    CAS  Google Scholar 

  15. 15.

    P. Miranda, A. Pajares, F. Guiberteau, F.L. Cumbrera, and B.R. Lawn: Role of flaw statistics in contact fracture of brittle coatings. Acta Mater. 49, 3719 (2001).

    CAS  Article  Google Scholar 

  16. 16.

    C-S. Lee, D.K. Kim, J. Sánchez, P. Miranda, A. Pajares, and B.R. Lawn: Rate effects in critical loads for radial cracking in ceramic coatings. J. Am. Ceram. Soc. 85, 2019 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    R. Swanepoel: Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214 (1983).

    CAS  Article  Google Scholar 

  18. 18.

    H. Chai, B.R. Lawn, and S. Wuttiphan: Fracture modes in brittle coatings with large interlayer modulus mismatch. J. Mater. Res. 14, 3805 (1999).

    CAS  Article  Google Scholar 

  19. 19.

    Y-W. Rhee, H-W. Kim, Y. Deng, and B.R. Lawn: Contactinduced damage in ceramic on compliant substrates: fracture mechanics and design. J. Am. Ceram. Soc. 84, 1066 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    B.R. Lawn, K.S. Lee, H. Chai, A. Pajares, D.K. Kim, S. Wuttiphan, I.M. Peterson, and X. Hu: Damage-resistant brittle coatings. Adv. Eng. Mater. 2, 745 (2000).

    Article  Google Scholar 

  21. 21.

    P. Miranda, A. Pajares, F. Guiberteau, F.L. Cumbrera, and B.R. Lawn: Contact fracture of brittle bilayer coatings on soft substrates. J. Mater. Res. 16, 115 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    W.J. Weibull: A statistical distribution function of wide applicability. Appl. Mech. 18, 293 (1951).

    Google Scholar 

  23. 23.

    B.R. Lawn: Fracture of Brittle Solids (Cambridge University Press, Cambridge, U.K., 1998), p. 338.

    Google Scholar 

  24. 24.

    M.F. Gruninger, B.R. Lawn, E.N. Farabaugh, and J.B. Wachtman: Measurement of residual stresses in coatings on brittle substrates by indentation fracture. J. Am. Ceram. Soc. 70, 344 (1987).

    CAS  Article  Google Scholar 

  25. 25.

    T-J. Chuang and S. Lee: Elastic flexure of bilayered beams subject to strain differentials. J. Mater. Res. 15, 2780 (2000).

    CAS  Article  Google Scholar 

  26. 26.

    B.R. Lawn: Fracture of Brittle Solids (Cambridge University Press, Cambridge, U.K., 1998), p. 307.

    Google Scholar 

  27. 27.

    B. Yu, K. Liang, and S. Gu: Effect of ZrO2 on crystallization of CaO–P2O5–SiO2 glasses. Ceram. Int. 28, 695 (2002).

    CAS  Article  Google Scholar 

  28. 28.

    K.J. Hong, J.M. Kim, and H.S. Kim: Microstructure and properties of CaO–ZrO2–SiO2 glass–ceramics prepared by sintering. J. Eur. Ceram. Soc. 23, 2193 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    L. Höglund and J. Ågren: Analysis of the Kirkendall effect, marker migration and pore formation. Acta Mater. 49, 1311 (2001).

    Article  Google Scholar 

  30. 30.

    H. Strandlund and H. Larsson: Prediction of Kirkendall shift and porosity in binary and ternary diffusion couples. Acta Mater. 52, 4695 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    E.O. Kirkendall: Diffusion of zinc in alpha brass. Trans. AIME 147, 104 (1942).

    Google Scholar 

  32. 32.

    A.D. Smigelskas and E.O. Kirkendall: Zinc diffusion in alpha brass. Trans. AIME 171, 130 (1947).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Estíbaliz Sánchez-González.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sánchez-González, E., Miranda, P., Díaz-Parralejo, A. et al. Influence of zirconia sol-gel coatings on the fracture strength of brittle materials. Journal of Materials Research 20, 1544–1550 (2005).

Download citation