Surfactant-assisted synthesis of lanthanide phosphates single-crystalline nanowires/nanorods

Abstract

A facile, surfactant-assisted, hydrothermal approach has been developed to synthesize lanthanide phosphate single-crystalline nanowires/nanorods with smooth surface, uniform diameter, and good crystallinity. The surfactant Pluronic P123 was found to play a crucial role on the uniform morphology of lanthanide phosphate single-crystalline nanowires/nanorods. Photoluminescence spectra of the lanthanide phosphate single-crystalline nanowires/nanorods show that these nanowires/nanorods have strong photoluminescent emissions in the ultraviolet-visible and near-infrared regions. The present work is a preliminary and significant step toward the potential luminescent and catalytic applications of lanthanide compound based one-dimensional nanostructures.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Y. Cui and C.M. Lieber: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    A.P. Alivisatos: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).

    CAS  Article  Google Scholar 

  3. 3.

    X. Duan, Y. Huang, Y. Cui, J. Wang, and C.M. Lieber: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001).

    CAS  Article  Google Scholar 

  4. 4.

    Z.L. Wang: Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater. 12, 1295 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yuan: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    T.W. Odom, J.L. Huang, P. Kim, and C.M. Lieber: Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B 104, 2794 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    M. Bockrath, W. Liang, D. Bozovie, J.H. Hafner, C.M. Lieber, M. Tinkham, and H. Park: Resonant electron scattering by defects in single-walled carbon nanotubes. Science 291, 283 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    X. Peng, D. Manna, W. Yang, J. Wickham, E. Sher, A. Kadavanich, and A.P. Alivisatos: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    A.M. Morales and C.M. Lieber: Laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).

    CAS  Article  Google Scholar 

  10. 10.

    M.S. Gudiksen and C.M. Lieber: Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc. 122, 8801 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    S.J. Park, S. Kim, S. Lee, Z.G. Khim, K. Char, and T. Hyeon: Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122, 8581 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    V.F. Puntes, K.M. Krishnan, and A.P. Alivisatos: Colloidal nanocrystal shape and size control: The case of cobalt. Science 291, 2115 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    M. Cao, C. Hu, G. Peng, Y. Qi, and E. Wang: Selected-control synthesis of PbO2 and Pb3O4 single-crystalline nanorods. J. Am. Chem. Soc. 125, 4982 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    M. Li, H. Schnablegger, and S. Mann: Coupled synthesis and selfassembly of nanoparticles to give structures with controlled organization. Nature 402, 393 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    S.J. Limmer, S. Seraji, M.J. Forbess, Y. Wu, T.P. Chou, C. Nguyen, and G. Cao: Electrophoretic growth of lead zirconate titanate nanorods. Adv. Mater. 13, 1269 (2001).

    CAS  Article  Google Scholar 

  17. 17.

    J.J. Urban, W.S. Yun, Q. Gu, and H. Park: Synthesis of singlecrystalline perovskite nanorods composed of barium titanate and strontium titanate. J. Am. Chem. Soc. 124, 1186 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    J.A. Nelson and M.J. Wagner: Synthesis of sodium tantalate nanorods by alkalide reduction. J. Am. Chem. Soc. 125, 332 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    S.H. Yu, M. Antonietti, H. Cölfen, and M. Giersig: Synthesis of very thin 1D and 2D CdWO4 nanoparticles with improved fluorescence behavior by polymer-controlled crystallization. Angew. Chem. Int. Ed. Engl. 41, 2356 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    S. Kwan, F. Kim, J. Akana, and P. Yang: Synthesis and assembly of BaWO4 nanorods. Chem. Comm. 447 (2001).

    Google Scholar 

  21. 21.

    K. Riwotzki, H. Meyssamy, A. Kornowski, and M. Haase: Liquidphase synthesis of doped nanoparticles: Colloids of luminescing LaPo4:Eu and CePo4:Tb particles with a narrow particle size distribution. J. Phys. Chem. B 104, 2824 (2000).

    CAS  Article  Google Scholar 

  22. 22.

    S. Heer, O. Lehmann, M. Haase, and H.U. Güdel: Blue, green, and red upconversion emission from lanthanide-doped LuPo4 and YbPo4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed. Engl. 42, 3179 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    P. Schuetz and F. Caruso: Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles. Chem. Mater. 14, 4509 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    K. Riwotzki, H. Meyssamy, H. Schnablegger, A. Kornowski, and M. Haase: Liquid-phase synthesis of colloids and redispersible powders of strongly lumenscing LaPo4:Ce,Tb nanocrystals. Angew. Chem. Int. Ed. Engl. 40, 573 (2001).

    CAS  Article  Google Scholar 

  25. 25.

    O. Lehmann, H. Meyssamy, K. Kompe, H. Schnablegger, and M. Haase: Synthesis, growth, and Er3+ luminescence of lanthanide phosphate nanoparticles. J. Phys. Chem. B. 107, 7449 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    Y.W. Zhang, Z.G. Yan, L.P. You, R. Si, and C.H. Yan: General synthesis and characterization of monocrystalline lanthanide orthophosphate nanwires. Eur. J. Inorg. Chem. 4099 (2003)

    Google Scholar 

  27. 27.

    Y. Zhang and H. Guan: Hydrothermal synthesis and characterization of hexagonal and monoclinic CePo4 single-crystal nanowires. J. Cryst. Growth 256, 156 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    K. Riwotzki, H. Meyssamy, H. Schnablegger, A. Kornowski, and M. Haase: Liquid-phase synthesis of colloids and redispersible powders of strongly lumenscing LaPo4:Ce,Tb nanocrystals. Angew. Chem. Int. Ed. Engl. 40, 573 (2001).

    CAS  Article  Google Scholar 

  29. 29.

    H. Meyssamy, K. Riwotzki, A. Kornowski, S. Naused, and M. Haase: Wet-chemical synthesis of doped colloidal nanomaterials: particles and fibers of LaPo4:Eu, LaPo4:Ce,Tb. Adv. Mater. 11, 840 (1999).

    CAS  Article  Google Scholar 

  30. 30.

    G.A. Hebbink, J.W. Stouwdam, D.N. Reinhoudt, and F.C.J.M. Veggel: Lanthanide(III)-doped nanoparticles that emit in the near-infrared. Adv. Mater. 14, 1147 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    C. Yang, D.D. Awschalom, and G.D. Stucky: Growth of CdS nanorods in nonionic amphiphilic triblock copolymer systems. Chem. Mater. 14, 1277 (2002).

    CAS  Article  Google Scholar 

  32. 32.

    D. Zhao, P. Yang, N. Melosh, J. Feng, B.F. Chmelka, and G.D. Stucky: Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater. 10, 1380 (1998).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jian-Lin Shi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bu, WB., Hua, ZL., Zhang, LX. et al. Surfactant-assisted synthesis of lanthanide phosphates single-crystalline nanowires/nanorods. Journal of Materials Research 19, 2807–2811 (2004). https://doi.org/10.1557/JMR.2004.0388

Download citation