Crystallization kinetics of amorphous Ga–Sb–Te chalcogenide films: Part I. Nonisothermal studies by differential scanning calorimetry

Abstract

Nonisothermal crystallization kinetics of amorphous chalcogenide Ga–Sb–Te films with compositions along the pseudo-binary tie-lines connecting Sb7Te3-GaSb and Sb2Te3–GaSb of the ternary phase diagram were investigated by means of differential scanning calorimetry. Powder samples were prepared firstly by film deposition using a co-sputtering method; the films were then stripped from the substrate. The activation energy (Ea) and rate factor (Ko) were evaluated from the heating rate dependency of the crystallization temperature using the Kissinger method. The kinetic exponent (n) was deduced from the exothermic peak integrals using the Ozawa method. The crystallization temperature (Tx = 181 to 327 °C) and activation energy (Ea= 2.8 to 6.5 eV) increased monotonically with increasing GaSb content andreached a maximum value in compositions located at the vicinity of GaSb. The kinetic exponent is temperature dependent and shows higher values in the SbTe-rich compositions. Promising media compositions worthy of further studies were identified through the determined kinetics parameters.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Yusu, S. Ashida, N. Nakamura, N. Oomachi, N. Morishita, A. Ogawa, and K. Ichihara: Advanced phase change media for blue laser recording of 18 GB capacity for 0.65 numerical aperture and 30 GB capacity for 0.85 numerical aperture. Jpn. J. Appl. Phys. 42, 858 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    C-M. Lee, W-S. Yen, R-H. Liu, and T-S. Chin: Performance of Ge-Sb–Bi-Te-B recording media for phase-change optical disks. Jpn. J. Appl. Phys. 40, 5321 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    C.M. Lee, T.S. Chin, and E.Y. Huang: Optical properties and structure of tellurium-germanium-bismuth-antimony compounds with fast phase-change capability. J. Appl. Phys. 89, 3290 (2001).

    CAS  Article  Google Scholar 

  4. 4.

    T. Narahara, S. Kobayashi, M. Hattori, Y. Shimpuku, G.J. van den Enden, J.A.H.M. Kahlman, M. van Dijk, and R. van Woudenberg: Optical disc system for digital video recording. Jpn. J. Appl. Phys. 39, 912 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    B. Tieke, M. Dekker, N. Pfeffer, R. van Woudenberg, G-F. Zhou, and I.P.D. Ubbens: High data-rate phase-change media for the digital video recording system. Jpn. J. Appl. Phys. 39, 762 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    C-M. Lee and T-S. Chin: New optical media based on Ge4Sb1-x BixTe5, in Proc. 12th Int. Conf. Ternary and Multinary Compounds. Jpn. J. Appl. Phys. Suppl. 39-1, 513 (2000).

    Article  Google Scholar 

  7. 7.

    C-M. Lee, T-S. Chin, Y-Y. Huang, I-C. Tung, T-R. Jeng, D-Y. Chiang, and D-R. Huang: Optical properties of Ge40Sb10Te50Bx (x _ 0-2) Films. Jpn. J. Appl. Phys. 38, 6369 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    C-M. Lee, Y-I. Lin, and T-S. Chin: Crystallization kinetics of amorphous Ga-Sb-Te films: Part II. Isothermal studies by a timeresolved optical transmission method. J. Mater. Res. 19, 2938 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    M. Avrami: Kinetics of phase change. I, General theory. J. Chem. Phys. 7, 1103 (1939).

    CAS  Article  Google Scholar 

  10. 10.

    M. Avrami: Kinetics of phase change. II, Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940).

    CAS  Article  Google Scholar 

  11. 11.

    M. Avrami: Kinetics of phase change. III, Granulation, phase change, and microstructure. J. Chem. Phys. 9, 177 (1941).

    CAS  Article  Google Scholar 

  12. 12.

    W.A. Johnson and R.F. Mehl: Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Metall. Pet. Eng. 135, 416 (1939).

    Google Scholar 

  13. 13.

    H.E. Kissinger: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957).

    CAS  Article  Google Scholar 

  14. 14.

    T. Ozawa: Kinetics of non-isothermal crystallization. Polym. 12, 150 (1971).

    CAS  Article  Google Scholar 

  15. 15.

    Y. Li, S.C. Ng, C.K. Ong, H.H. Hng, and T.T. Goh: Glass forming ability of bulk glass forming alloys. Scripta Mater. 36, 783 (1997).

    CAS  Article  Google Scholar 

  16. 16.

    J.W. Christian: The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon, Oxford, U.K., 1975), p. 542.

    Google Scholar 

  17. 17.

    N. Ohshima: Crystallization of germanium-antimony-tellurium amorphous thin film sandwiched between various dielectric protective films. J. Appl. Phys. 79, 8357 (1996).

    CAS  Article  Google Scholar 

  18. 18.

    C.M. Lee and T.S. Chin: (unpublished).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chain-Ming Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, CM., Lin, YI. & Chin, TS. Crystallization kinetics of amorphous Ga–Sb–Te chalcogenide films: Part I. Nonisothermal studies by differential scanning calorimetry. Journal of Materials Research 19, 2929–2937 (2004). https://doi.org/10.1557/JMR.2004.0378

Download citation