Nonisothermal reaction kinetics and preparation of ferroelectric strontium bismuth niobate with a layered perovskite structure


Ferroelectric layered perovskite SrBi2Nb2O9 has been successfully prepared through a new process using BiNbO4 as a precursor. The SrBi2Nb2O9 formation mechanism was investigated using a nonisothermal analysis method at constant heating rates. The weight lossrecorded in thermal analysis under different heating rates was analogized to thereaction conversion. A combination of the differential and integral methods was introduced to solve thereaction mechanisms. Analysis using the differential method revealed that two kinds of diffusion-controlled models have higher linear correlation coefficients than other models. Based on the integral method principle, a new integral equation combining the Arrhenius equation and the Lobatto approximation was derived in this study. The established equation significantly simplified the conventional calculation process and improved the accuracy for predicting thereaction models. Analysis using the integral method corroborated that the SrBi2Nb2O9 formation mechanism is governed by Jander’s diffusion controlled model, and the activation energy was calculated to be 192.1 kJ/mol. The proposed methods and the derived equations can be further applied to other solid-state-reaction systems to elucidate their reaction kinetics and estimate therelated kinetic parameters.

This is a preview of subscription content, access via your institution.


  1. 1.

    C.P. de Araujo, A. Paz, L.D. Mcmillan, B.M. Melnick, J.D. Cuchiaro, and J.F. Scott: Ferroelectric memories. Ferroelectrics. 104, 241 (1990).

    Article  Google Scholar 

  2. 2.

    C. Araujo, A. Paz, J.D. Cuchiaro, M.C. Scott, and L.D. Mcmillan: Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627 (1995).

    Article  Google Scholar 

  3. 3.

    K. Amanuma, T. Hase, and Y. Miyasaka: Preparation and ferroelectric properties of SrBi2Ta2O9 thin films. Appl. Phys. Lett. 66, 221 (1995).

    CAS  Article  Google Scholar 

  4. 4.

    C.H. Lu and C.Y. Wen: Phase formation and ferroelectric characteristics of nonfatigue barium bismuth tantalate thin films. J. Appl. Phys. 86, 6335 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    C.H. Lu and C.Y. Wen: Strontium barium bismuth tantalate layered perovskites: Thin film preparation and ferroelectric characteristics. J. Eur. Ceram. Soc. 20, 739 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    S. Ohfuji, M. Itsumi, S. Ogawa, and H. Shinojima: Sensitivity of SrBi2Ta2O9 capacitors to materials and annealing processes in upper electrode formation. Thin Solid Films 411, 274 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    K. Nishizawa, T. Miki, K. Suzuki, and K. Kato: Control of crystallization and crystal orientation of alkoxy-derived SrBi2Ta2O9 thin films by ultraviolet irradiation. J. Mater. Res. 18, 899 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    J. Celinska, V. Joshi, S. Narayan, L. McMillan, and C.P. de Araujo: Effects of scaling the film thickness on the ferroelectric properties of SrBi2Ta2O9 ultra thin films. Appl. Phys. Lett. 82, 3937 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    S.M. Zanetti, E.B. Arujo, E.R. Leite, E. Longo, and J.A. Varela: Structural and electrical properties of SrBi2Nb2O9 thin films prepared by chemical aqueous solution at low temperature. Mater. Lett. 40, 33 (1999).

    CAS  Article  Google Scholar 

  10. 10.

    T. Asau, E.R. Camargo, M. Kakihana, and M. Osada: A novel aqueous solution route to the low-temperature synthesis of SrBi2Nb2O9 by use of water-soluble Bi and Nb complexes. J. Alloy Compd. 309, 113 (2000).

    Article  Google Scholar 

  11. 11.

    H.N. Lee, S. Senz, A. Pignolet, and D. Hesse: Epitaxial growth of (103)-oriented ferroelectric SrBi2Ta2O9 thin films on Si(100). Appl. Phys. Lett. 78, 2922 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    M.A. Zurbuchen, G. Asayama, and D.G. Schlom: Ferroelectric domaun structure of SrBi2Nb2O9 epitaxial thin films. Phys. Rev. Lett. 88, 10760 (2002).

    Article  Google Scholar 

  13. 13.

    J.D. Hancock and J.H. Sharp: Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J. Am. Ceram. Soc. 55, 74 (1972).

    CAS  Article  Google Scholar 

  14. 14.

    S.M. Shih: A graphical method of analyzing reaction mechanism from non-isothermal kinetic data. J. Chin. Inst. Chem. Eng. 14, 115 (1982).

    Google Scholar 

  15. 15.

    M. Avrami: Kinetics of phase change. Int. J. Chem. Phys. 7, 1103 (1939).

    CAS  Article  Google Scholar 

  16. 16.

    M. Avrami: Kinetics of phase change. Int. J. Chem. Phys. 8, 212 (1940).

    CAS  Article  Google Scholar 

  17. 17.

    W. Jander: Reactions in solid state at high temperature. Int. Z. Anorg. Allg. Chem. 163, 1 (1927).

    CAS  Article  Google Scholar 

  18. 18

    A.M. Ginstling and B.L. Brounshtein: Diffusion kinetics of reactions in spherical particles. J. Appl. Chem. USSR 23, 1327 (1950).

    CAS  Google Scholar 

  19. 19.

    C.D. Doyle: Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 6, 639 (1962).

    CAS  Article  Google Scholar 

  20. 20.

    A.W. Coats and J.P. Redfern: Kinetics parameters from thermogravimatric data. Nature 201, 68 (1964).

    CAS  Article  Google Scholar 

  21. 21.

    G.R. Heal: Evaluation of the integral of the Arrhenius function by a series of Chebyshev polynomials — use in the analysis of nonisothermal kinetics. Thermochim. Acta 340, 69 (1999).

    Article  Google Scholar 

  22. 22.

    R.G. Rice and D.D. Do: Applied Mathematics and Modeling for Chemical Engineering (John Wiley & Sons, New York, 1995), p. 676.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Chung-Hsin Lu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lu, CH., Hsu, WT. & Lee, JT. Nonisothermal reaction kinetics and preparation of ferroelectric strontium bismuth niobate with a layered perovskite structure. Journal of Materials Research 19, 2956–2963 (2004).

Download citation