Indentation strain burst phenomenon induced by grain boundaries in niobium

Abstract

Using depth-sensing indentation, a pop-in phenomenon induced by grain boundaries, namely, a sudden indenter displacement jump when indented near a grain boundary segment, was observed in polycrystalline niobium. This grain-boundary type of pop-in occurs at a larger force than the initial elasto-plastic pop-in, which is observed with and without a grain boundary nearby. The experimental results show that this pop-in effect has a close relationship with the misorientation across the grain boundary. The occurrence of this pop-in phenomenon is rationalized in terms of slip transmission across the grain boundary.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K.T. Aust, R.E. Hanneman, P. Niessen, and J.H. Westbrook: Solute induced hardening near grain boundaries in zone refined metals. Acta Metall. 16, 291 (1968).

    CAS  Article  Google Scholar 

  2. 2.

    T. Watanabe, S. Kitamura, and S. Karashima: Grain-boundary hardening and segregation in alpha-iron-tin alloy. Acta Metall. 28, 455 (1980).

    CAS  Article  Google Scholar 

  3. 3.

    L.B. Harris, V.R. Howes, and N.G. Cutmore: Microhardness of NaCl bicrystals. J. Am. Ceram. Soc. 65, 35 (1982).

    CAS  Article  Google Scholar 

  4. 4.

    Y.T. Chou, B.C. Cai, Jr., A.D. Romig, and L.S. Lin: Correlation between grain-boundary hardening and grain-boundary energy in niobium bicrystals. Philos. Mag. A 47, 363 (1983).

    CAS  Article  Google Scholar 

  5. 5.

    Z.Q. Zhou and Y.T. Chou: Structure dependence of grain-boundary hardening in oriented niobium bicrystals. J. Less. Comm. Met. 114, 323 (1985).

    CAS  Article  Google Scholar 

  6. 6.

    J.W. Wyrzykowski and M.W. Grabski: The Hall-Petch relation in aluminum and its dependence on the grain-boundary structure. Philos. Mag. A 53, 505 (1986).

    CAS  Article  Google Scholar 

  7. 7.

    C.S. Lee, G.W. Han, R.E. Smallman, D. Feng, and J.K.L. Lai: The influence of boron-doping on the effectiveness of grain boundary hardening in Ni3Al. Acta Mater. 47, 1823 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    P.C. Wo and A.H.W. Ngan: Investigation of slip transmission behavior across grain boundaries in polycrystalline Ni3Al using na-noindentation. J. Mater. Res. 19, 189 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    G.K. Baranova: Etching of dislocations in niobium single-crystals. Scripta Metall. 11, 827 (1977).

    CAS  Article  Google Scholar 

  10. 10.

    T.F. Page, W.C. Oliver, and C.J. McHargue: The deformation-behavior of ceramic crystals subjected to very low load (nano)in-dentations. J. Mater. Res. 7, 450 (1992).

    CAS  Article  Google Scholar 

  11. 11.

    W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, and J.T. Wyrobek: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).

    CAS  Article  Google Scholar 

  12. 12.

    S.A. Syed Asif and J.B. Pethica: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    D.F. Bahr, D.E. Kramer, and W.W. Gerberich: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    T.A. Michalske and J.E. Houston: Dislocation nucleation at nano-scale mechanical contacts. Acta Mater. 46, 391 (1998).

    CAS  Article  Google Scholar 

  15. 15.

    A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, and S. Suresh: Discrete and continuous deformation during nanoin-dentation of thin films. Acta Mater. 48, 2277 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    Y.L. Chiu and A.H.W. Ngan: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    Y.L. Chiu and A.H.W. Ngan: A TEM investigation on indentation plastic zones in Ni3Al(Cr,B) single crystals. Acta Mater. 50, 2677 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, and W.W. Gerberich: Yield strength predictions from the plastic zone around nanocontacts. Acta Mater. 47, 333 (1999).

    CAS  Article  Google Scholar 

  19. 19.

    K. Ishio, K. Kikuchi, M. Kusano, M. Mizumoto, K. Mukugi, A. Naito, N. Ouchi, and Y. Tsuchiya: Fracture toughness and mechanical properties of pure niobium and welded joints for superconducting cavities at 4K. In Proceedings of the 9th Workshop on RF Superconductivity, edited by B. Rusnak (Santa Fe, NM, 1999), Organized by Los Alamos National Laboratory, NM, Published online at http://lansce.lanl.gov/rfsc99/.

    Google Scholar 

  20. 20.

    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985), pp. 173.

    Google Scholar 

  21. 21.

    K. Zeng, E. Söderlund, A.E. Giannakopoulos, and D.J. Rowcliffe: Controlled indentation: A general approach to determine mechanical properties of brittle materials. Acta Mater. 44, 1127 (1996).

    CAS  Article  Google Scholar 

  22. 22.

    P.R.V. Evans: The dependence of the lower yield stress on grain size in niobium. J. Inst. Met. 92, 57 (1963).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, M.G., Ngan, A.H.W. Indentation strain burst phenomenon induced by grain boundaries in niobium. Journal of Materials Research 19, 2478–2486 (2004). https://doi.org/10.1557/JMR.2004.0316

Download citation