Synthesis of platinum/multi-wall carbon nanotube catalysts


The purpose of this research is to investigate the feasibility of the synthesis of platinum/multi-wall carbon nanotube (Pt/MWNT) catalysts and such catalysts’ application in fuel cells. The as-received MWNTs were purified and decorated by pretreatment. Infrared-spectrum indicates the carboxylic (-COOH) and carbonyl (-C=O) groups were introduced on the surface of the MWNTs after pretreatment. These functional groups will act as anchor sites for the Pt deposition. Then the Pt particles in nano scale were deposited on the surface of MWNTs by reduction of a solution of hexachloroplatinic acid. Transmission electron microscopy examination reveals that Pt particles are attached to the surface of MWNTs. If as-received MWNTs are not pretreated in the proper way, the Pt particle aggregates are mostly found on the open end of MWNTs. Occasionally Pt penetrated inside the tube of MWNTs. The relationship between the Pt particle morphology and the conditions of pretreatment and reduction reaction is discussed. After heat treatment, Pt particles recrystallized to form the Pt/MWNT catalysts. The Pt/MWNT catalysts were applied to a single cell and the test result shows a promising future of these catalysts with low Pt loading when applied in proton exchange membrane fuel cells (PEMFCs).

This is a preview of subscription content, access via your institution.


  1. 1.

    L.X. You and H.T. Liu: A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model. Int. J. Hydrogen Energy 26, 991 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    H.M. Yu, Z.J. Hou, B.L. Yi, et al.: Composite anode for CO tolerance proton exchange membrane fuel cells. J. Power Sources 105, 52 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    Z.G. Qi and A. Kaufman: Low Pt loading high performance cathodes for PEM fuel cells. J. Power Sources 113, 37 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    K.H. Choi, H.S. Kim, and T.H. Lee: Electrode fabrication for proton exchange membrane fuel cells by pulse electrodeposition. J. Power Sources 75, 230 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    M.S. Wilson and S. Gottesfeld: High performance catalyzed membranes of ultra-low platinum loadings for polymer electrolyte fuel cells. J. Appl. Electrochem. 22, 1 (1992).

    CAS  Article  Google Scholar 

  6. 6.

    J. Breen, R. Burch, and H. Coleman: Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel-cell applications. Appl. Catal. Environ. 39, 65 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    S.D. Thompson, L.R. Jordan, and M. Forsyth: Platinum electro-deposition for polymer electrolyte membrane fuel cells. Electro-chim. Acta 46, 1657 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Chun, C. Kim, D. Peck, et al.: Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes. J. Power Sources 71, 174 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    R. O’Hayre, S. Lee, S. Cha, et al.: A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading. J. of Power Sources 109, 483 (2002).

    Article  Google Scholar 

  10. 10.

    Z.G. Qi, M. Lefebvre, and P. Pickp: Electron and proton transport in gas diffusion electrodes containing electronically conductive proton-exchange polymers. J. Electroanal. Chem. 459, 9 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    G.R. Chen and C.L. Xu, et al.: Deposition of the platinum crystals on the carbon nanotubes. Chinese Science Bulletin. 45, 134 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    H. Dai, E.W. Wony, and C.M. Leiber: Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science 272, 523 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    H. Dai, J.H. Hafner, A.G. Rinzeler, D.T. Collbert, and R.E. Smallery: Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    R.M. Baum: Nurturing nanotubes. Chem. Eng. News 75, 39 (1997).

    Article  Google Scholar 

  15. 15.

    Y. Ye, C.C. Ahn, C.K. Witham, B. Fultz, J. Liu, A. Rinzler, D. Colbert, K. Smith, and R. Smalley: Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 277, 933 (1999).

    Google Scholar 

  16. 16.

    G.E. Gadd, M. Blackford, S. Moricca, N. Webb, P.J. Evans, A.M. Smith, G. Jacobson, S. Leung, A. Day, and Q. Hua: The world’s smallest gas cylinders. Science 277, 933 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    B. Rajesh and K. Ravindranathan, et al.: Preparation of a Pt-Ru bimetallic system supported on carbon nanotubes. J. Mater. Chem. 10, 1757 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    V. Lordi, N. Yao, and J. Wei: Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733 (2001).

    CAS  Article  Google Scholar 

  19. 19.

    B.C. Satishkumart, E.M. Vogl, A. Govindaraj, and C.N.R. Rao: The decoration of carbon nanotubes by metal nanoparticles. J. Phys. D Appl. Phys. 176, 3173 (1996).

    Article  Google Scholar 

  20. 20.

    S. Gamburzev and A. Appleby: Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). J. Power Sources 107, 5 (2002).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mu, P., Haolin, T., Shichun, M. et al. Synthesis of platinum/multi-wall carbon nanotube catalysts. Journal of Materials Research 19, 2279–2284 (2004).

Download citation