Manufacturing and commercialization issues in organic electronics

Abstract

Techniques for manufacturing organic electronic devices [organic light-emitting diodes (OLEDs), photovoltaic cells, transistors, and solid-state memory] are reviewed and analyzed with respect to cost and market fitness in comparison to competitive approaches based on silicon electronics. The conclusions are (i) OLED displays will be successful using infrastructure largely borrowed from liquid crystal displays, because they provide fundamental customer value not dependent on lower cost; (ii) OLEDs for general lighting and organic–inorganic hybrid photovoltaic cells currently confront substantial barriers in cost and efficiency, but solutions appear feasible and would lead to very large volume businesses; (iii) organic crossbar memories are promising, but require innovations in driver architecture and interconnection; and (iv) organic transistors have not yet found a viable major market, but have great promise for highly customized, small-volume product runs using digital patterning techniques.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Pope and C.E. Swenberg: Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, Oxford, U.K., 1998).

  2. 2.

    For excellent reviews and references see C.R. Kagan and P. Andry, Thin Film Transistors (Marcel Dekker, New York, 2003)

  3. 3.

    From Siemens Research, 31 May 2001. Available at http://www.siemens.com/page/1%2C3771%2C241723-1-999 4_0-0-pressIndex_0_b ereichChoice_999%2C00.html.

  4. 4.

    J.A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V.R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic: Paper-like electronic displays: Large-area rubberstamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. 98, 4835 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    J.A. Rogers, A. Dodabalapur, Z. Bao, and H.E. Katz: Low-voltage 0.1 mm organic transistors and complementary inverter circuits fabricated with a low-cost form of near-field photolithography. Appl. Phys. Lett. 75, 1010 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    C.D. Dimitrakopoulos and D.J. Mascaro: Organic thin-film transistors: A review of recent advances. IBM J. Res. Dev. 45, 11 (2001).

  7. 7.

    D. Perettie, W. Hwang, T. McCarthy, P. Pierini, D. Speliotis, J. Judy, and Q. Chen: A high-performance, flexible substrate for thin-film media, J. Magn. Magn. Mater. 120, 334 (1993).

    CAS  Article  Google Scholar 

  8. 8.

    M. Ikeda, Y. Mizutani, S. Ashida, and K. Yamada: Characteristics of low-temperature-processed a-Si TFT for plastic substrates. IEICE Trans. Electron. E83-C, 1584 (2000).

  9. 9.

    J.R. Sheats: Roll-to-roll manufacturing of thin film electronics. Proc. SPIE 4388, 240 (2002).

  10. 10.

    R. Kukla, R. Ludwig, and J. Meinel: Overview on modern vacuum web coating technology. Surf. Coat. Technol. 86, 753 (1996).

    Article  Google Scholar 

  11. 11.

    J.R. Sheats and B.W. Smith, eds.: Microlithography: Science and Technology (Marcel Dekker, New York, 1998).

  12. 12.

    K. Jain, M. Zemel, and M. Klosner: Large-area, high-resolution lithography and photoablation systems for microelectronics and optoelectronics fabrication. Proc. IEEE 90, 1681 (2002).

    Article  Google Scholar 

  13. 13.

    F. Clube, M. Jorda, S. Mourgue, A.R. Nobari, S. Inoue, C. Iriguchi, E. Grass, H. Mayer, and M. Brunner: 0.5-μm enabling lithography for low-temperature polysilicon displays. SID Conf. Digest. 34, 350 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    M.A. Baldo, V.G. Kozlov, P.E. Burrows, S.R. Forrest, V.S. Ban, B. Koene, and M.E. Thompson: Low pressure organic vapor phase deposition of small molecular weight organic light emitting device structures. Appl. Phys. Lett. 71, 3033 (1997).

    CAS  Article  Google Scholar 

  15. 15.

    S.F. Kistler and P.M. Schweizer, eds.: Liquid Film Coating (Chapman & Hall, 1997).

  16. 16.

    F. Shepherd: Modern Coating Technology Systems (Emap Maclaren Ltd, Barnet, U.K., 1995).

  17. 17.

    J.A. Rogers, Z. Bao, H.E. Katz and A. Dodabalapur: Organic Transistors: Materials, Patterning Techniques, and Application, in Ref. 2, pp. 377–426.

  18. 18.

    G.B. Blanchet, Y-L. Loo, J.A. Rogers, F. Gao, and C.R. Fincher: Large area, high resolution, dry printing of conducting polymers for organic electronics. Appl. Phys. Lett. 82, 463 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Xia and G.W. Whitesides: Soft lithography. Angew. Chem. Int. Ed. 37, 550 (1998).

  20. 20.

    B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf: Printing meets lithography: Soft approaches to high-resolution patterning. IBM J. Res. Dev. 45, 697 (2001).

    CAS  Article  Google Scholar 

  21. 21.

    P. Calvert: Inkjet printing for materials and devices. Chem. Mater. 13, 3299–3305 (2001).

  22. 22.

    A.J. Walton, J.T.M. Stevenson, M. Fallon, P.S.A. Evans, B.J. Ramsey and D.J. Harrison: Characterisation of offset lithographic films using microelectronic test structures. IEICE Trans. Electron. E-82-C, 576–581 (1999).

  23. 23.

    E.J. Wilhelm and J. Jacobsen, in Flexible Electronics—Materials and Device Technology, edited by N. Fruehauf, B.R. Chalamala, B.E. Gnade, and J. Jang (Mater. Res. Soc. Symp. Proc. 769, Warrendale, PA, 2003), p. 247, H8.1-6.

  24. 24.

    C.M. Sotomayor Torres: ed., Alternative Lithography (Kluwer, 2003).

  25. 25.

    Heng Liu: High-volume production of AlInGaN-based LEDs, Compound Semiconductor Magazine, Nov 2001, available at http://www.compoundsemiconductor.net/articles/magazine/7/11/4/1.

  26. 26.

    1280 × 1064 pixels at $300, currently a “sale” price but rapidly becoming common.

  27. 27.

    J. Kimmel: Displays for portable communications devices, Information Display (SID) 17, 18–21 (Sep. 2001).

  28. 28.

    Press release: 26 June 2002; www.creo.com.

  29. 29.

    S.T. Lee, J.Y. Lee, M.H. Kim, M.C. Suh, T.M. Kang, Y.J. Choi, J.Y. Park, J.H. Kwon, H.K. Chung, J. Baetzold, E. Bellmann, V. Savveteev, M. Wolk, and S. Webster: A new patterning method for full-color polymer light-emitting devices: laser induced thermal imaging (LITI). SID Conf. Digest 33, 784 (2002).

    CAS  Article  Google Scholar 

  30. 30.

    C.D. Mueller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhim, P. Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz: Multi-colour organic light-emitting displays by solution processing. Nature 421, 829 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    T. Tachikawa, N. Itoh, S. Handa, and T. Miyake: Full-color polymer light-emitting devices using photolithography method. Proc. 23rd International Display Research Conference, (15–18 Sep 2003, Phoenix, AZ), pp. 45–48.

  32. 32.

    The exact amount depends of course on page coverage, amount of color, and type of paper, but this is a typical average for ordinary paper, which was obtained from the HP website www.hp.com. It does not include the cost of the printer, which in most cases adds less than a penny per page.

  33. 33.

    C. Dreher: Why do books cost so much? Salon.com, 3 Dec 2002; available at www.salon.com/books/feature/2002/12/03/prices/.

  34. 34.

    The company which is arguably the leader in supplying innovative jet-printing technology is Microfab, but they serve mainly R&D applications rather than a specific production focus.

  35. 35.

    C. Edwards, R. Bennett, J-G. Lee, and K. Silz: Precision industrial ink jet printing technology for full color PLED display manufacturing, 2nd Internat. Meeting on Inf. Display (Daegu, Korea, Jul 2002); available at www.litrex.com.

  36. 36.

    SEMATECH Final Report for LITG501, Technology Transfer #00104014A-TR, 31 Oct 2000.

  37. 37.

    http://www.hell-gravure-systems.com/services/knowledgebase/english/FA-Xtreme-e.pdf.

  38. 38.

    A. Maurer, A.C. Hübler, and G. Wozniak: Rheological Demands on Offset Printing Ink for New Inking Unit Concepts, 2nd Internat. Symp. Printing & Coating Technol. (18–19 September 2000; University of Wales, Swansea, Wales, U.K.)

  39. 39.

    J. Brill, E. Lueder, M. Randler, S. Voegele, and V. Frey: A flexible ferroelectric liquid crystal display with improved mechanical stability for smart-card applications. J. SID. 10, 189 (2002).

    Google Scholar 

  40. 40.

    A. Bergh, G. Craford, A. Duggal, and R. Haitz: The promise and challenge of solid-state lighting, Phys. Today 54, 42 (2001).

    CAS  Article  Google Scholar 

  41. 41.

    C.E. Kennedy, R. Swisher, and R.V. Smilgys: Cost analysis of solar reflective hard-coat materials, Proc. 17th Internat. Vacuum Web Coating Conf. (26-29 Oct. 2003, Santa Ana Pueblo, NM).

  42. 42.

    B.W. D’Andrade and S.R. Forrest: Single-dopant p-i-n white organic light emitting devices. SID Symp. Digest 34, 967 (2003).

  43. 43.

    M. Schwambera, N. Meyer, M. Gersdorff, M. Reinhold, G. Strauch, R. Beccard, and M. Heuken: OLED manufacturing by organic vapor phase deposition. SID Symp. Digest 34, 1419 (2003).

    CAS  Article  Google Scholar 

  44. 44.

    E. Matsumoto, S. Maki, Y. Yanagi, T. Nishimori, Y. Kondo, Y. Kishi, and J. Kido: The high deposition rates and high material yield evaporation method for oled layers. SID Conf. Digest 34, 1423 (2003).

    CAS  Article  Google Scholar 

  45. 45.

    M. Shibata, D. Klein, R. Hartmann, and P.P. Chow: Versatile evaporation source for large OLED panel manufacturing. SID Conf. Digest 34, 1426 (2003).

    CAS  Article  Google Scholar 

  46. 46.

    G. Li and J. Shinar: Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl. Appl. Phys. Lett. 83, 5359 (2003).

  47. 47.

    A. Duggal: unpublished; Jan. 2004. Lifetime of the blue primary emitter is not available.

  48. 48.

    R.D. Brown: Indium, U.S. Geological Survey, Mineral Commodity Summaries (January 2002), p. 80; available at http://minerals.usgs.gov/minerals/pubs/commodity/indium/.

  49. 49.

    Light Emitting Diodes 2003 conference (Intertech USA); available at http://www.environmental-expert.com/events/leds2003/leds2003.htm

  50. 50.

    From 2003 CIA World Factbook; http://www.photius.com/rankings/electricity consumption 0.html

  51. 51.

    H. Lievens: Wide web coating of complex materials. Surf. Coat. Technol. 76, 744 (1995).

  52. 52.

    M. Hissler, J.E. McGarrah, W.B. Connick, D.K. Geiger, S.D. Cummings, and R. Eisenberg: Platinum diimine complexes: towards a molecular photochemical device. Coord. Chem. Rev. 208, 115 (2000).

    CAS  Article  Google Scholar 

  53. 53.

    C.W. Tang, A.P. Marchetti, and R.H. Young: Organic photovoltaic elements:, U.S. Patent No. 4,125,414 (13 Mar 1978).

  54. 54.

    C.E. Tang: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183 (1986).

  55. 55.

    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789 (1995).

    CAS  Article  Google Scholar 

  56. 56.

    Dieter Meissner: Plastic Solar Cells. International Photovoltaics Journal Feb-Mar 1999.

  57. 57.

    B. O’Regan and M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).

    Article  Google Scholar 

  58. 58.

    E.A. Alsema: Environmental aspects of solar cell modules: Summary report. Report nr. 96074; ISBN 90-73958-17-2 (Aug 1996); Dept. of Science, Technology and Society, Ultrecht University, Padualaan 14, NL-3584 CH Ultrecht, The Netherlands

  59. 59.

    PV systems are customarily rated according to a standard “peak” solar intensity known as AM1.5. This calculation assumes that 1 GWcontinuous = 6.5 GWp, and module lifetime 25 years.

  60. 60.

    J. Makower, R. Pernick, and A. Friendly: Solar Opportunity Assessment Report, (Solar Catalyst Group and Coop America Foundation, Washington, DC, Dec 2003); www.solarcatalyst.com

  61. 61.

    J. Yang, A. Banerjee, and S. Guha: Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies. Appl. Phys. Lett. 70, 2975 (1997).

    CAS  Article  Google Scholar 

  62. 62.

    R.E.I. Schropp, C.H.M. Van Der Werf, M. Zeman, M.C.M. Van De Sanden, C.I.M.A. Spee, E. Middelman, L.V. De Jonge-Meschaninova, P.M.G.M. Peters, A.A.M. Van Der Zijden, M.M. Besselink, R.J. Severens, J. Winkler, and G.J. Jongerden, in Amorphous and Heterogeneous Silicon Thin Films: Fundamentals to Devices—1999, edited by H.M. Branz, R.W. Collins, H. Okamoto, S. Guha, and R. Schropp (Mater. Res. Soc. Symp. Proc. 557, Warrendale, PA, 1999), p. 713.

  63. 63.

    www.thaiphotovoltaics.com (their plan is for a-Si on glass, using entirely conventional manufacturing processes, but taking advantage of a Thailand-based business model; with an ultimate cost projection of less than $1/W).

  64. 64.

    M. Yano, K. Suzuki, K. Nakatani, and H. Okaniwa: Roll-to-roll preparation of a hydrogenated amorphous silicon solar cell on a polymer film substrate. Thin Solid Films 146, 75 (1987).

    CAS  Article  Google Scholar 

  65. 65.

    Y. Ichikawa, S. Fujikaka, K. Tabuchi, T. Sasaki, T. Hama, T. Yoshida, H. Sakai, and M. Saga, in Amorphous and Heterogeneous Solicon Thin Films: Fundamentals to Devices—1999, edited by H.M. Branz, R.W. Collins, H. Okamoto, S. Guha, and R. Schropp (Mater. Res. Soc. Symp. Proc. 557, Warrendale, PA, 1999), p. 703.

  66. 66.

    T. Yoshida, S. Fujikaka, S. Kato, M. Tanda, K. Tabuchi, A. Takano, Y. Ichikawa, and H. Sakai: Development of process gtechnologies for plastic-film substrate solar cells. Solar Energy Materials and Solar Cells 48, 383 (1997).

    CAS  Article  Google Scholar 

  67. 67.

    CdTe and Cu: (In,Ga)Se solar cells have also been made using roll-to-roll processes; review of these is beyond the scope of this article. Amorphous silicon is a prototypical competitor to organic PV but not a unique one.

  68. 68.

    A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner: Photovoltaic technology: The case for thin-film solar cells. Science 285, 692 (1999).

    CAS  Article  Google Scholar 

  69. 69.

    À.D. Grimmer, F. Jeffrey, S. Martens, M. Thomas, V. Dalal, M. Noack, and H. Shanks: Lightweight, flexible, monolithic thin-film amorphous silicon modules on continuous polymer substrates. Int. J. Solar Energy 18, 205 (1996).

    Article  Google Scholar 

  70. 70.

    T. Aernouts, P. Vanlaeke, W. Geens, J. Poortmans, P. Heremans, S. Borghs, R. Mertens, R. Andriessen, and L. Leenders: Printable anodes for flexible organic solar cell modules. Thin Solid Films 451, 22 (2004).

    Article  CAS  Google Scholar 

  71. 71.

    R. Crandall and W. Luft: The future of amorphous silicon photovoltaic technology. Prog. Photovoltaics: Research and Applications 3, 315 (1995).

  72. 72.

    V. Dalal: Fundamental considerations regarding the growth of amorphous and microcrystalline silicon and alloy films. Thin Solid Films 395, 173 (2001).

  73. 73.

    B.A. Korevaar, G.J. Adriaenssens, A.H.M. Smets, W.M.M. Kessels, H-Z. Song, M.C.M. van de Sanden, and D.C. Schram: High hole drift mobility in a-Si: H deposited at high growth rates for solar cell application, J. Non-Cryst. Solids 266, 380 (2000).

    Article  Google Scholar 

  74. 74.

    R.B. Wehrspohn, S.C. Deane, I.D. French, and M.J. Powell: Stability of plasma deposited thin film transistors-comparison of amorphous and microcrystalline silicon. Thin Solid Films 383, 117 (2001).

    CAS  Article  Google Scholar 

  75. 75.

    S.E. Shaheen, C.J. Brabec, N.S. Saraciftci, F. Padinger, T. Fromherz, and J.C. Hummelen: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841 (2001).

    CAS  Article  Google Scholar 

  76. 76.

    W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos: Hybrid nanorodpolymer solar cells. Science 295, 2425 (2002).

    CAS  Article  Google Scholar 

  77. 77.

    J. Krüger, R. Plass, L. Cevey, M. Piccirelli, and M. Grätzel: High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl. Phys. Lett. 79, 2085 (2001).

    Article  CAS  Google Scholar 

  78. 78.

    R.F.I.D. Journal: (23 Jan 2004); available at http://216.121.131.129/article/articleprint/764/-1/1/.

  79. 79.

    S.E. Burns, P. Cain, J. Mills, J. Wang, and H. Sirringhaus: Inkjet printing of functional materials. MRS Bull. Nov, 829–834 (2003).

  80. 80.

    M. McDonald, S. Heun and N. Tallant: Advances in piezoelectric deposition of organic electronic materials, IS&T Internat. Conf. Digital Printing Technol. NIP 18 (San Diego, CA, 29 Sep-4 Oct 2003).

  81. 81.

    Plastic Logic has introduced a technique using conventional lithography to pattern surface energy and thereby increase printing resolution; cf. Ref. 86. This does not materially change the following discussion.

  82. 82.

    W-K. Chang: in Nikkei Electronics Asia, August 2002 (available at http://neasia.nikkeibp.com/nea/200208/inst 200146.html). The cost quoted here assumes manufacturing cost to be 50% of consumer price, and the TFT panel to be 40% of manufacturing cost; these are approximate but reasonable estimates. Current retail prices of LCD monitors suggests that Samsung as well as many other companies are meeting or exceeding this projection already.

  83. 83.

    This does not mean that other factors such as labor, floorspace, materials, etc. are unimportant, but they tend to be secondary, and are accounted for by the capital/throughput metric on a relative basis.

  84. 84.

    S.S. Kim: Fabricating color TFT-LCDs. Information Display 17 (n.9), 22 (Sep 2001).

  85. 85.

    The data underlying this assertion can be found in a wide range of equipment vendor press releases and Sematech notes (see ref. 36 for example), as well as from private conversations with representatives of equipment suppliers. Note also G.L.-T Chiu and J.M. Shaw: Optical lithography: introduction. IBM J. Res. Dev. 41, 3 (1997).

  86. 86.

    H. Sirringhaus, T.L. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E.P. Woo: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123 (2000).

    CAS  Article  Google Scholar 

  87. 87.

    Roger Stewart: private communication.

  88. 88.

    C.D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, J. Callegari, and J.M. Shaw: Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 283, 822 (1999).

    CAS  Article  Google Scholar 

  89. 89.

    J. Collet, O. Tharaud, A. Chapoton and D. Vuillaume: Low-voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films. Appl. Phys. Lett. 76, 1941 (1998).

    Article  Google Scholar 

  90. 90.

    J.A. Rogers, A. Dodabalapour, Z. Bao, and H.E. Katz: Low-voltage 0.1 mm organic transistors and complementary inverter circuits fabricated with a low-cost form of near-field photolithography. Appl. Phys. Lett. 75, 1010 (1999).

    CAS  Article  Google Scholar 

  91. 91.

    À C.J. Drury, C.M.J. Mutsaers, C.M. Hart, M. Matters, and D.M. de Leeuw: Low-cost all-polymer integrated circuits. Appl. Phys. Lett. 73, 108 (1998).

    CAS  Article  Google Scholar 

  92. 92.

    C. Landesberger, S. Scherbaum, G. Schwinn and H. Spöhrle: New process scheme for wafer thinning and stress-free separation of ultra thin ICs. Internat. Conf. on Micro-, Electro-, Opto-, Mechanical Systems and Components, Düsseldorf, 27-29 Mar 2001 (VDE-Verlag, 2001), pp. 431–436.

  93. 93.

    T. Harder and W. Reinert: Low-profile flip-chip assembly using ultra-thin ICs. Proc. Internat. Conf. Adv. Packaging and Systems (10-13 Mar 2002; Reno, NV; Internat. Microelectronics and Packaging Society, www.imaps.org).

  94. 94.

    Possibly more: this calculation is based on the density of Pentium-type microprocessors, whose density is interconnection limited.

  95. 95.

    Y. Okada, A. Ban, M. Okamoto, W. Oka, Y. Matsuda, and S. Shibahara: A 4-inch reflective color TFT-LCD using a plastic substrate. SID Conf. Digest 33, 1204 (2002).

    CAS  Article  Google Scholar 

  96. 96.

    H. Gleskova, S. Wagner, V. Gašparik, and P. Kovác: 150°C amorphous silicon thin-film transistor technology for polyimide substrates: Silicon nitride layer and interface optimization. J. Electrochem. Soc. 148, G370 (2001).

  97. 97.

    J.R. Sheats: Vacuum process considerations for large area flexible electronics. Proc. 17th Internat. Vacuum Web Coating Conf. (26-20 Oct. 2003, Santa Ana Pueblo, NM).

  98. 98.

    C.E. Forbes, A. Gelbman, C. Turner, H. Gleskova, and S. Wagner: A rugged conformable backplane fabricated with an a-Si:H TFT array on a polyimide substrate. SID Conf. Digest. 33, 1200 (2002).

    CAS  Article  Google Scholar 

  99. 99.

    E. Lueder: Passive and active matrix liquid crystal displays with plastic substrates. Electrochem. Soc. Proc. 98, 336 (1999).

  100. 100.

    A. Sazonov, A. Nathan, R.V.R. Murthy, and S.G. Chamberlain, in Flat-Panel Displays and Sensors—Principles, Materials and Processes, edited by B.R. Chalamala, R.H. Friend, T.N. Jackson, and F.R. Libsch (Mater. Res. Soc. Symp. Proc. 558, Warrendale, PA, 2000), p. 375.

  101. 101.

    B.A. MacDonald, K. Rollins, R. Eveson, K. Rakos, B.A. Rustin, and M. Handa, in Flexible Electronics—Materials and Device Technology, edited by N. Fruehauf, B.R. Chalamala, B.E. Gnade, and J. Jang (Mater. Res. Soc. Symp. Proc. 769, Warrendale: PA, 2003), p. 283, H9.3.1–8.

  102. 102.

    S. Inoue, S. Utsunomiya, T. Saeki, and T. Shimoda: Surface-free technology by laser annealing (SUFTLA) and its application to poly-Si TFT-LCDs on plastic film with integrated drivers. IEEE Trans. Electron Dev. 49, 1353 (2002).

    CAS  Article  Google Scholar 

  103. 103.

    A. Asano and T. Kinoshita: Low-temperature polycrystallinesilicon TFT color LCD panel made of plastic substrates. SID Conf. Digest 33, 1196 (2002).

  104. 104.

    J. Jacobsen, A. Chiang, A. Hermanns, M. McDonald, F. Vicentini, M. Marentic, J. Atherton, E. Boling, F. Cuomo, P. Drzaic, A. Holman, G. Liu, S. Pearson, W. Peschke, D.P. Vu, and R. Stewart: Plastic film displays with NanoBlock IC drivers integrated by fluidic self assembly process. SID Conf. Digest 33, 726 (2002).

    CAS  Article  Google Scholar 

  105. 105.

    Y. Shi, J. Bernkopf, S. Herrmann, A. Hermanns, and D. Choquette: Polymer light-emitting diode displays driven by integrated Nano-Block IC drivers. SID Conf. Digest 33, 1092 (2002).

    CAS  Article  Google Scholar 

  106. 106.

    G.H. Gelinck, H.E.A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H. Van Der Putten, T.C.T. Geuns, M. Beenhakkers, J.B. Giesbers, B-H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J.E. Van Rens, and D.M. De Leeuw: Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3, 106 (2004).

    CAS  Article  Google Scholar 

  107. 107.

    Epigem Ltd.; www.epigem.co.uk.

  108. 108.

    C. Taussig, P. Mej, A. Jeans, W. Jackson, C. Perlov, H-J. Kim, H. Luo, B. Hamburgen, F. Jeffrey, C. Sell, S. Braymen, and K. Beacom: USDC Flexible Electronics conference, Phoenix, AZ, 10-12 Feb. 2004.

  109. 109.

    P.F. Baude, D.A. Ender, T.W. Kelley, M.A. Haase, D.V. Muyres, and S.D. Theiss: Organic semiconductor RFID transponders. IEDM Techn. Digest (7-10 Dec 2003, Washington, DC), paper #8.1.

  110. 110.

    C-Y. Liu, H-L. Pan, M.A. Fox, and A.J. Bard: High-density nanosecond charge trapping in thin films of the photoconductor ZnODEP. Science 261, 897 (1993).

    CAS  Article  Google Scholar 

  111. 111.

    H.G. Gudesen, P.-E. Nordal, G.I. Leistad, Electrically addressable passive device, method for electrical addressing of the same and uses of the device and the method. U.S. Patent No. 6,055,180 (25 Apr 2000).

  112. 112.

    Q. Li, S. Surthi, G. Mathur, S. Gowda, V. Misra, T.A. Sorenson, R.C. Tenent, W.G. Kuhr, S-I. Tamaru, J.S. Lindsey, Z. Liu, and D.F. Bocian: Electrical characterization of redox-active molecular monolayers on SiO2 for memory applications. Appl. Phys. Lett. 83, 198 (2003).

    CAS  Article  Google Scholar 

  113. 113.

    L. Ma, J. Liu, S. Pyo, and Y. Yang: Organic bistable lightemitting devices. Appl. Phys. Lett. 80, 362 (2002).

    CAS  Article  Google Scholar 

  114. 114.

    Actually Zettacore: (Ref. 113) currently has an active matrix structure similar to DRAMs, but they propose to develop passive matrix eventually.

  115. 115.

    Clayton Christensen: The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail (Harvard Business, Cambridge, 1997).

  116. 116.

    The disruptive innovation wire, Jan/Feb 2002, Innosight LLC (www.innosight.com).

  117. 117.

    Available at www.innosight.com.

  118. 118.

    http://www.tekmos.com/asics/cap faq.htm.

  119. 119.

    http://www.xilinx.com/products/webace/wp112.pdf; white paper WP112(v1.0) February 23, 2000.

  120. 120.

    S. Rosenthal: Checkout lower performance processors, too. Personal Instrumentation & Engineering News 10, 60 (1993).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to James R. Sheats.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sheats, J.R. Manufacturing and commercialization issues in organic electronics. Journal of Materials Research 19, 1974–1989 (2004). https://doi.org/10.1557/JMR.2004.0275

Download citation