Organic thin film transistors: From theory to real devices


The organic thin-film transistor (OTFT) is now a mature device that has developed tremendously during the last twenty years. The aim of this paper is to update previous reviews on that matter that have been published in the past. The operating mode of OTFTs is analyzed in view of recent model development. This mainly concerns the distribution of charges in the conducting channel and problems connected with contact resistance. We also delineate what differentiates n- and p-type semiconductors, and show how this concept differs from what it covers in conventional semiconductors. In the chapter devoted to fabrication techniques, emphasis is placed on solution-based techniques and particularly printing processes. Similarly, soluble materials are given a prominent place in the section dedicated to the performance of devices. Finally, special attention is given to devices at the nanoscale level, which demonstrate a new route toward molecular electronics.

This is a preview of subscription content, access via your institution.


  1. 1.

    J.E. Lilienfeld: (United States of America, 1930).

  2. 2.

    D. Kahng and M.M. Atalla: in IRE Solid-State Devices Research Conference (Carnegie Institute of Technology, Pittsburgh, PA, 1960).

  3. 3.

    W.E. Spear and P.G. Le Comber: Investigation of the localised state distribution in amorphous Si films, J. Non-Cryst. Solids 8–10, 727 (1972).

    Article  Google Scholar 

  4. 4.

    G.W. Neudeck and A.K. Malhotra: An amorphous silicon thinfilm transistor. Solid-State Electron. 19, 721 (1976).

  5. 5.

    P.K. Weimer: The TFT—A new thin-film transistor, Proc. IRE 50, 1462 (1962).

    Article  Google Scholar 

  6. 6.

    M. Pope and C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, New York, 1999).

  7. 7.

    D.F. Barbe and C.R. Westgate: Surface state parameters of metal-free phthalocyanine single crystals. J. Phys. Chem. Solids 31, 2679 (1970).

  8. 8.

    M.L. Petrova and L.D. Rozenshtein: Field effect in the organic semiconductor chloranil. Fiz. Tverd. Tela (Soviet Phys. Solid State) 12, 961 (1970).

  9. 9.

    F. Ebisawa, T. Kurokawa, and S. Nara: Electrical properties of polyacetylene-polysiloxane interface. J. Appl. Phys. 54, 3255 (1983).

    CAS  Article  Google Scholar 

  10. 10.

    A. Tsumura, K. Koezuka, and T. Ando: Macromolecular electronic device: Field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 49, 1210 (1986).

    CAS  Article  Google Scholar 

  11. 11.

    H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A. Heeger: Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 00, 578 (1977).

    CAS  Article  Google Scholar 

  12. 12.

    G. Horowitz, D. Fichou, X.Z. Peng, Z.G. Xu, and F. Garnier: A field-effect transistor based on conjugated alpha-sexithienyl. Solid State Commun. 72, 381 (1989).

    CAS  Article  Google Scholar 

  13. 13.

    C.W. Tang and S.A. van Slyke: Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913 (1987).

  14. 14.

    J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, and A.B. Holmes: Lightemitting diodes based on conjugated polymers. Nature 341, 539 (1990).

    Article  Google Scholar 

  15. 15.

    H.E. Katz: Organic molecular solids as thin film transistor semiconductors. J. Mater. Chem. 7, 369 (1997).

  16. 16.

    A.R. Brown, C.P. Jarrett, D.M. de Leeuw, and M. Matters: Fieldeffect transistors made from solution-processed organic semiconductors. Synth. Metal 88, 37 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    F. Garnier: Thin-film transistors based on organic conjugated semiconductors. Chem. Phys. 227, 253 (1998).

  18. 18.

    G. Horowitz: Organic field-effect transistors. Adv. Mater. 10, 365 (1998).

  19. 19.

    C.D. Dimitrakopoulos and P.R.L. Malenfant: Organic thin film transistors for large area electronics. Adv. Mater. 14, 99 (2002).

  20. 20.

    A. Kahn, N. Koch, and W. Gao: Electronic structure and electrical properties of interfaces between metals and p-conjugated molecular films. J. Polym. Sci., Part B: Polymer Physics 41, 2529 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    B. Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, and F. Garnier: Polymorphism and charge transport in vacuum-evaporated sexithiophene films. Chem. Mater. 6, 1809 (1994).

    CAS  Article  Google Scholar 

  22. 22.

    F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, and P. Alnot: Molecular engineering of organic semiconductors—design of self-assembly properties in conjugated thiophene oligomers. J. Am. Chem. Soc. 115, 8716 (1993).

    CAS  Article  Google Scholar 

  23. 23.

    T. Minakata, I. Nagoya, and M. Ozaki: Highly ordered and conducting thin film of pentacene doped with iodine vapor. J. Appl. Phys. 69, 7354 (1991).

    CAS  Article  Google Scholar 

  24. 24.

    C.D. Dimitrakopoulos, A.R. Brown, and A. Pomp: Molecular-beam deposited thin-films of pentacene for organic-field effect transistor applications. J. Appl. Phys. 80, 2501 (1996).

    CAS  Article  Google Scholar 

  25. 25.

    C. Tanase, E.J. Meijer, P.W.M. Blom, and D.M. de Leeuw: Local charge-carrier mobility in disordered organic field-effect transistors. Org. Electron. 4, 33 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    S.M. Sze: Physics of Semiconductor Devices, 2nd ed. (John Wiley, New York, 1981).

  27. 27.

    N.F. Mott and R.W. Gurney: Electronic Processes in Ionic Crystals (Clarendon Press, Oxford, U.K., 1940).

  28. 28.

    A. Dodabalapur, L. Torsi, and H.E. Katz: Organic transistors: Two-dimensional transport and improved electrical characteristics. Science 268, 270 (1995).

    CAS  Article  Google Scholar 

  29. 29.

    G. Horowitz, unpublished.

  30. 30.

    E.L. Granstrom and C.D. Frisbie: Field effect conductance measurements on thin crystals of sexithiophene. J. Phys. Chem. B 103, 8842 (1999).

  31. 31.

    M. Kiguchi, M. Nakayama, K. Fujiwara, K. Ueno, T. Shimada, and K. Saiki: Accumulation and depletion layer thicknesses in organic field effect transistors. Jpn. J. Appl. Phys. Part 2 42, L1408 (2003).

  32. 32.

    P.V. Necliudov, M.S. Shur, D.J. Gundlach, and T.N. Jackson: Modeling of organic thin film transistors of different designs. J. Appl. Phys. 88, 6594 (2000).

    CAS  Article  Google Scholar 

  33. 33.

    G. Horowitz, M.E. Hajlaoui, and R. Hajlaoui: Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 87, 4456 (2000).

    CAS  Article  Google Scholar 

  34. 34.

    R.A. Street and A. Salleo: Contact effects in polymer transistors. Appl. Phys. Lett. 81, 2887 (2002).

  35. 35.

    M. Shur: Physics of semiconductor devices (Prentice-Hall, Englewood Cliffs, NJ, 1990).

  36. 36.

    K. Seshadri and C.D. Frisbie: Potentiometry of an operating organic semiconductor field-effect transistor. Appl. Phys. Lett. 78, 993 (2001).

  37. 37.

    L. Burgi, H. Sirringhaus, and R.H. Friend: Noncontact potentiometry of polymer field-effect transistors. Appl. Phys. Lett. 80, 2913 (2002).

    CAS  Article  Google Scholar 

  38. 38.

    L. Burgi, T.J. Richards, R.H. Friend, and H. Sirringhaus: Close look at charge carrier injection in polymer field-effect transistors. J. Appl. Phys. 94, 6129 (2003).

    CAS  Article  Google Scholar 

  39. 39.

    P.V. Necliudov, M.S. Shur, D.J. Gundlach, and T.N. Jackson: Contact resistance extraction in pentacene thin film transistors. Solid-State Electron. 47, 259 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    J. Zaumseil, K.W. Baldwin, and J.A. Rogers: Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination. J. Appl. Phys. 93, 6117 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C.D. Sheraw, J.A. Nichols, and T.N. Jackson: Contact resistance in organic thin film transistors. Solid-State Electron. 47, 297 (2003).

    CAS  Article  Google Scholar 

  42. 42.

    E.J. Meijer, G.H. Gelinck, E. van Veenendaal, B.H. Huisman, D.M. de Leeuw, and T.M. Klapwijk: Scaling behavior and parasitic series resistance in disordered organic field-effect transistors. Appl. Phys. Lett. 82, 4576 (2003).

    CAS  Article  Google Scholar 

  43. 43.

    S. Luan and G.W. Neudeck: An experimental study of the source/drain parasitic resistance effects in amorphous silicon thin film transistors. J. Appl. Phys. 72, 766 (1992).

  44. 44.

    V. Podzorov, V.M. Pudalov, and M.E. Gershenson: Field-effect transistors on rubrene single crystals with parylene gate insulator. Appl. Phys. Lett. 82, 1739 (2003).

    CAS  Article  Google Scholar 

  45. 45.

    J. Takeya, C. Goldmann, S. Haas, K.P. Pernstich, B. Ketterer, and B. Batlogg: Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals. J. Appl. Phys. 94, 5800 (2003).

    CAS  Article  Google Scholar 

  46. 46.

    J.A. Merlo and C.D. Frisbie: Field effect conductance of conducting polymer nanofibers. J. Polymer Sci., Part B: Polymer Physics 41, 2674 (2003).

    CAS  Google Scholar 

  47. 47.

    N. Koch, A. Kahn, J. Ghijsen, J-J. Pireaux, J. Schwartz, R.L. Johnson, and A. Elschner: Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism. Appl. Surf. Sci. 82, 70 (2003).

    CAS  Google Scholar 

  48. 48.

    T. Li, P.P. Ruden, I.H. Campbell, and D.L. Smith: Investigation of bottom-contact organic field effect transistors by two-dimensional device modeling. J. Appl. Phys. 93, 4017 (2003).

    CAS  Article  Google Scholar 

  49. 49.

    N. Tessler and Y. Roichman: Two-dimensional simulation of polymer field-effect transistor. Appl. Phys. Lett. 79, 2987 (2001).

  50. 50.

    N.J. Watkins, L. Yan, and Y. Gao: Electronic structure symmetry of interfaces between pentacene and metals. Appl. Phys. Lett. 80, 4384 (2002).

    CAS  Article  Google Scholar 

  51. 51.

    C.D. Dimitrakopoulos, I. Kymissis, S. Purushothaman, D.A. Neumayer, P.R. Duncombe, and R.B. Laibowitz: Low-voltage, high-mobility pentacene transistors with solution-processed high-dielectric constant insulators. Adv. Mater. 11, 1372 (1999).

    CAS  Article  Google Scholar 

  52. 52.

    M.C.J.M. Vissenberg and M. Matters: Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. B 57, 12964 (1998).

  53. 53.

    C. Tanase, E.J. Meijer, P.W.M. Blom, and D.M. de Leeuw: Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601/1 (2003).

  54. 54.

    N. Karl, J. Marktanner, R. Stehle, and W. Warta: High-field saturation of charge carrier drift velocities in ultrapurified organic photoconductors. Synth. Metal 42, 2473 (1991).

    CAS  Article  Google Scholar 

  55. 55.

    F.V. Farmakis, J. Brini, G. Kamarinos, C.T. Angelis, and C.A. Dimitriadis, and M. Miyasaka: On-current modeling of large-grain polycrystalline silicon thin-film transistors. IEEE Tans. Electron Devices 48, 701 (2001).

    CAS  Article  Google Scholar 

  56. 56.

    G. Horowitz: Tunnel current in organic field-effect transistors. Synth. Metal 138, 101 (2003).

  57. 57.

    G. Horowitz and M.E. Hajlaoui: Grain size dependent mobility in polycrystalline organic field-effect transistors. Synth. Metal 122, 185 (2001).

  58. 58.

    D. Knipp, R.A. Street, A. Völkel, and J. Ho: Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport. J. Appl. Phys. 93, 347 (2003).

    CAS  Article  Google Scholar 

  59. 59.

    R.B. Campbell, J.M. Robertson, and J. Trotter: The crystal and molecular structure of pentacene. Acta Crystallogr. 14, 705 (1961).

    CAS  Article  Google Scholar 

  60. 60.

    R.B. Campbell and J.M. Robertson: The crystal structure of hexacene, and a revision of the crystallographic data for tetracene ane pentacene. Acta Crystallogr. 15, 289 (1962).

    CAS  Article  Google Scholar 

  61. 61.

    D.J. Gundlach, C.C. Kuo, C.D. Sheraw, J.A. Nichols, and T.N. Jackson: Proc. SPIE. 3366, 54 (2001).

    Article  Google Scholar 

  62. 62.

    E.A. Silinsh and V. Càpek: Organic molecular crystals: Interaction, localization, and transport phenomena (AIP Press, New York, 1994).

  63. 63.

    V.M. Kenkre, J.D. Andersen, D.H. Dunlap, and C.B. Duke: Unified theory of the mobilities of photoinjected electrons in naphthalene. Phys. Rev. Lett. 62, 1165 (1989).

    CAS  Article  Google Scholar 

  64. 64.

    J.L. Brédas, D. Beljonne, J. Cornil, J.P. Calbert, Z. Shuai, and R. Silbey: Electronic structure of pi-conjugated oligomers and polymers: A quantum-chemical approach to transport properties. Synth. Metal 125, 107 (2002).

    Article  Google Scholar 

  65. 65.

    R.C. Haddon, X. Chi, M.E. Itkis, J.E. Anthony, D.L. Eaton, T. Siegrist, C.C. Mattheus, and T.T.M. Palstra: Band electronic structure of one- and two-dimensional pentacene molecular crystals. J. Phys. Chem. B 106, 8288 (2002).

    CAS  Article  Google Scholar 

  66. 66.

    Y.C. Cheng, R.J. Silbey, D.A. Da Silva, J.P. Calbert, J. Cornil, and J.L. Bredas: Three-dimensional band structure and bandlike mobility in oligoacene single crystals: A theoretical investigation. J. Chem. Phys. 118, 3764 (2003).

    CAS  Article  Google Scholar 

  67. 67.

    L. Giuggioli, J.D. Andersen, and V.M. Kenkre: Mobility theory of intermediate-bandwidth carriers in organic crystals: Scattering by acoustic and optical phonons. Phys. Rev. B 67, (2003).

  68. 68.

    V. Podzorov, S.E. Sysoev, E. Loginova, V.M. Pudalov, and M.E. Gershenson: Single-crystal organic field effect transistors with the hole mobility ~8 cm2/V s. Appl. Phys. Lett. 83, 3504 (2003).

    CAS  Article  Google Scholar 

  69. 69.

    P.G. Le Comber and W.E. Spear: Electronic transport in amorphous silicon films. Phys. Rev. Lett. 25, 509 (1970).

  70. 70.

    G. Horowitz, R. Hajlaoui, and P. Delannoy: Temperature dependence of the field-effect mobility of sexithiophene: Determination of the density of traps. J. Phys. III France 5, 355 (1995).

    CAS  Article  Google Scholar 

  71. 71.

    S.F. Nelson, Y.Y. Lin, D.J. Gundlach, and T.N. Jackson: Temperature-independent transport in high-mobility pentacene transistors. Appl. Phys. Lett. 72, 1854 (1998).

    CAS  Article  Google Scholar 

  72. 72.

    G. Horowitz, R. Hajlaoui, R. Bourguiga, and M. Hajlaoui: Theory of the organic field-effect transistor. Synth. Metal 101, 401 (1999).

    CAS  Article  Google Scholar 

  73. 73.

    F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava: Allpolymer field-effect transistor realized by printing techniques. Science 265, 1684 (1994).

    CAS  Article  Google Scholar 

  74. 74.

    Z.N. Bao, Y. Feng, A. Dodabalapur, V.R. Raju, and A.J. Lovinger: High-performance plastic transistors fabricated by printing techniques. Chem. Mater. 9, 1299 (1997).

    CAS  Article  Google Scholar 

  75. 75.

    J.A. Rogers, Z.N. Bao, A. Makhija, and P. Braun: Printing process suitable for reel-to-reel production of high-performance organic transistors and circuits. Adv. Mater. 11, 741 (1999).

    CAS  Article  Google Scholar 

  76. 76.

    Y. Xia and G.M. Whitesides: Soft lithography. Angew. Chem. Int. Ed. 37, 550 (1998).

  77. 77.

    T.R. Hebner, C.C. Wu, D. Marcy, M.H. Lu, and J.C. Sturm: Inkjet printing of doped polymers for organic light-emitting devices. Appl. Phys. Lett. 72, 519 (1998).

    CAS  Article  Google Scholar 

  78. 78.

    Y. Yang, S.C. Chang, J. Bharathan, and J. Liu: Organic/ polymeric electroluminescent devices processed by hybrid inkjet printing. J. Mater. Sci.: Mater. Electron. 11, 89 (2000).

    CAS  Google Scholar 

  79. 79.

    O. Yokoyama: Active-matrix full color organic electroluminescent displays fabricated by ink-jet printing. Optronics 254, 119 (2003).

  80. 80.

    H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E.P. Woo: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123 (2000).

    CAS  Article  Google Scholar 

  81. 81.

    G.B. Blanchet, Y.L. Loo, J.A. Rogers, F. Gao, and C.R. Fincher: Large area, high resolution, dry printing of conducting polymers for organic electronics. Appl. Phys. Lett. 82, 463 (2003).

    CAS  Article  Google Scholar 

  82. 82.

    C. Bartic, H. Jansen, A. Campitelli, and S. Borghs: Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors. Org. Electron. 3, 65 (2002).

    CAS  Article  Google Scholar 

  83. 83.

    J. Veres, S.D. Ogier, S.W. Leeming, D.C. Cupertino, and S.M. Khaffaf: Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199 (2003).

    CAS  Article  Google Scholar 

  84. 84.

    H. Bassler: Charge transport in disordered organic photoconductors. Phys Status Solidi. 175, 15 (1993).

  85. 85.

    H. Sirringhaus, R.J. Wilson, R.H. Friend, M. Inbasekaran, W. Wu, E.P. Woo, M. Grell, and D.D.C. Bradley: Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77, 406 (2000).

    CAS  Article  Google Scholar 

  86. 86.

    H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveldvoss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, and D.M. de Leeuw: Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685 (1999).

    CAS  Article  Google Scholar 

  87. 87.

    H.G.O. Sandberg, G.L. Frey, M.N. Shkunov, H. Sirringhaus, R.H. Friend, M.M. Nielsen, and C. Kumpf: Ultrathin regioregular poly(3-hexyl thiophene) field-effect transistors. Langmuir 18, 10176 (2002).

    CAS  Article  Google Scholar 

  88. 88.

    G.M. Wang, J. Swensen, D. Moses, and A.J. Heeger: Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors. J. Appl. Phys. 93, 6137 (2003).

    CAS  Article  Google Scholar 

  89. 89.

    T.W. Kelley, D.V. Muyres, P.F. Baude, T.P. Smith, and T.D. Jones: High performance organic thin film transistors, in Organic and Polymeric Materials and Devices, edited by P.W.M. Blom, N.C. Greenham, C.D. Dimitrakopoulos, and C.D. Frisbie. (Mater. Res. Soc. Symp. Proc. 771, Warrendale, PA, 2003), p. 169.

  90. 90.

    M. Halik, H. Klauk, U. Zschieschang, G. Schmid, S. Ponomarenko, S. Kirchmeyer, and W. Weber: Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors. Adv. Mater. 15, 917 (2003).

    CAS  Article  Google Scholar 

  91. 91.

    D.J. Gundlach, Y.Y. Lin, T.N. Jackson, S.F. Nelson, and D.G. Schlom: Pentacene organic thin-film transistors—molecular ordering and mobility. IEEE Electron. Device Lett. 18, 87 (1997).

    CAS  Article  Google Scholar 

  92. 92.

    W.A. Schoonveld, R.W. Stok, J.W. Weijtmans, J. Vrijmoeth, J. Wildeman, and T.M. Klapwijk: Morphology of quaterthiophene thin films in organic field effect transistors. Synth. Metal 84, 583 (1997).

    CAS  Article  Google Scholar 

  93. 93.

    Y.Y. Lin, D.J. Gundlach, T.N. Jackson, and S.F. Nelson: Penta-cene-based organic thin film transistors. IEEE Trans. Electron. Dev. 44, 1325 (1997).

    CAS  Article  Google Scholar 

  94. 94.

    A. Facchetti, M. Mushrush, H.E. Katz, and T.J. Marks: n-Type building blocks for organic electronics: A homologous family of fluorocarbon-substituted thiophene oligomers with high carrier mobility. Adv. Mater. 15, 33 (2003).

    CAS  Article  Google Scholar 

  95. 95.

    F. Garnier, R. Hajlaoui, A. Elkassmi, G. Horowitz, L. Laigre, W. Porzio, M. Armanini, and F. Provasoli: Dihexylquaterthio-phene, a two-dimensional liquid crystal-like organic semiconductor with high transport properties. Chem. Mater. 10, 3334 (1998).

    CAS  Article  Google Scholar 

  96. 96.

    H.E. Katz, W. Li, A.J. Lovinger, and J. Laquindanum: Solutionphase deposition of oligomeric TFT semiconductors. Synth. Metal 102, 897 (1999).

    CAS  Article  Google Scholar 

  97. 97.

    H.E. Katz, J.G. Laquindanum, and A.J. Lovinger: Synthesis, solubility, and field-effect mobility of elongated and oxasubstituted alpha,omega-dialkyl thiophene oligomers. Extension of “polar intermediate” synthetic strategy and solution deposition on transistor substrates. Chem. Mater. 10, 633 (1998).

    CAS  Article  Google Scholar 

  98. 98.

    J.H. Edwards, W.J. Feast, and D.C. Bott: Polymer 21, 595 (1980).

    CAS  Article  Google Scholar 

  99. 99.

    R.H. Friend, D.D.C. Bradley, and P.D. Towsend: J. Phys. Appl. 20, 1367 (1987).

    CAS  Google Scholar 

  100. 100.

    A.R. Brown, A. Pomp, D.M. de Leeuw, D.B.M. Klaassen, E.E. Havinga, P. Herwig, and K. Müllen: Precursor route pentacene metal-insulator-semiconductor field-effect transistors. J. Appl. Phys. 79, 2136 (1996).

    CAS  Article  Google Scholar 

  101. 101.

    P.T. Herwig and K. Mullen: A soluble pentacene precursor: Synthesis, solid-state conversion into pentacene and application in a field-effect transistor, Adv. Mater. 11, 480 (1999).

    CAS  Article  Google Scholar 

  102. 102.

    A. Afzali, C.D. Dimitrakopoulos, and T.L. Breen: High-performance, solution-processed organic thin film transistors from a novel pentacene precursor. J. Am. Chem. Soc. 124, 8812 (2002).

    CAS  Article  Google Scholar 

  103. 103.

    M. Shtein, H.F. Gossenberger, J.B. Benziger, and S.R. Forrest: Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition. J. Appl. Phys. 89, 1470 (2001).

    CAS  Article  Google Scholar 

  104. 104.

    M. Shtein, J. Mapel, J.B. Benziger, and S.R. Forrest: Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors. Appl. Phys. Lett. 81, 268 (2002).

    CAS  Article  Google Scholar 

  105. 105.

    G. Horowitz, F. Garnier, A. Yassar, R. Hajlaoui, and F. Kouki: Field-effect transistor made with a sexithiophene single-crystal. Adv. Mater. 8, 52 (1996).

    CAS  Article  Google Scholar 

  106. 106.

    G. Horowitz, R. Hajlaoui, and F. Kouki: An analytical model for the organic field-effect transistor in the depletion mode. Application to sexithiophene films and single crystals. Eur. Phys. J. Appl. Phys. 1, 361 (1998).

    CAS  Article  Google Scholar 

  107. 107.

    R.W.I. de Boer, T.M. Klapwijk, and A.F. Morpurgo: Field-effect transistors on tetracene single crystals. Appl. Phys. Lett. 83, 4345 (2003).

    Article  CAS  Google Scholar 

  108. 108.

    M. Ichikawa, H. Yanagi, Y. Shimizu, S. Hotta, N. Suganuma, T. Koyama, and Y. Taniguchi: Organic field-effect transistors made of epitaxially grown crystals of a thiophene/phenylene cooligomer. Adv. Mater. 14, 1272 (2002).

    CAS  Article  Google Scholar 

  109. 109.

    V.Y. Butko, X. Chi, and A.P. Ramirez: Free-standing tetracene single crystal field effect transistor. Solid State Commun. 128, 431 (2003).

    CAS  Article  Google Scholar 

  110. 110.

    C.P. Jarrett, K. Pichler, R. Newbould, and R.H. Friend: Transport studies in C-60 and C-60/C-70 thin-films using metal-insulator-semiconductor field-effect transistors. Synth. Metal 77, 35 (1996).

    CAS  Article  Google Scholar 

  111. 111.

    T. Shimada and A. Koma: Electron spectroscopy of C-60 thin film FET structures. Jpn. J. Appl. Phys. Part 1 41, 2724 (2002).

  112. 112.

    S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, and Y. Iwasa: Fabrication and characterization of C-60 thin-film transistors with high field-effect mobility. Appl. Phys. Lett. 82, 4581 (2003).

    CAS  Article  Google Scholar 

  113. 113.

    H.E. Katz, A.J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y.Y. Lin, and A. Dodabalapur: A soluble and air-stable organic semiconductor with high electron mobility. Nature 404, 478 (2000).

    CAS  Article  Google Scholar 

  114. 114.

    P.R.L. Malenfant, C.D. Dimitrakopoulos, J.D. Gelorme, L.L. Kosbar, T.O. Graham, A. Curioni, and W. Andreoni: N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Appl. Phys. Lett. 80, 2517 (2002).

    CAS  Article  Google Scholar 

  115. 115.

    H. Tada, H. Touda, M. Takada, and K. Matsushige: Field-effect mobility of F16PcCu films in various gas atmospheres. J. Porphyr. Phthalocya. 3, 667 (1999).

    CAS  Article  Google Scholar 

  116. 116.

    S. Hoshino, S. Nagamatsu, M. Chikamatsu, M. Misaki, Y. Yoshida, N. Tanigaki, and K. Yase: LiF/Al bilayer source and drain electrodes for n-channel organic field-effect transistors. Synth. Metal 137, 953 (2003).

    CAS  Article  Google Scholar 

  117. 117.

    A. Facchetti, Y. Deng, A.C. Wang, Y. Koide, H. Sirringhaus, T.J. Marks, and R.H. Friend: Tuning the semiconducting properties of sexithiophene by alpha, omega-substitution-alpha,omega-diperfluorohexylsexithiophene: The first n-type sexithiophene for thin-film transistors. Angew. Chem. Int. Ed. 39, 4547 (2000).

    CAS  Article  Google Scholar 

  118. 118.

    E.J. Meijer, D.M. De Leeuw, S. Setayesh, E. van Veenendaal, B.H. Huisman, P.W.M. Blom, J.C. Hummelen, U. Scherf, and T.M. Klapwijk: Solution-processed ambipolar organic field-effect transistors and inverters. Nature Mater. 2, 678 (2003).

    CAS  Article  Google Scholar 

  119. 119.

    E.T. Turner-Jones, O.M. Chyan, and M.S. Wrighton: Preparation and characterization of molecule-based transistors with a 50 nm-source-drain separation with use of shadow deposition techniques: Toward faster, more sensitive molecule-based devices. J. Am. Chem. Soc. 109, 5526 (1987).

    Article  Google Scholar 

  120. 120.

    J. Collet, O. Tharaud, A. Chapoton, and D. Vuillaume: Low-voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films. Appl. Phys. Lett. 76, 1941 (2000).

    CAS  Article  Google Scholar 

  121. 121.

    M.D. Austin and S.Y. Chou: Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography. Appl. Phys. Lett. 81, 4431 (2002).

  122. 122.

    Y. Zhang, J.R. Petta, S. Ambily, Y. Shen, D.C. Ralph, and G.G. Malliaras: 30 nm channel length pentacene transistors. Adv. Mater. 15, 1632 (2003).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gilles Horowitz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horowitz, G. Organic thin film transistors: From theory to real devices. Journal of Materials Research 19, 1946–1962 (2004).

Download citation