Spherical Nanoindentations and Kink Bands in Ti3SiC2

An Erratum to this article was published on 01 July 2004

This article has been updated

Abstract

We report for the first time on load versus depth-of-indentation response of Ti3SiC2 surfaces loaded with a 13.5 μm spherical tipped diamond indenter up to loads of 500 mN. Using orientation imaging microscopy, two groups of crystals were identified; one in which the basal planes were parallel to, and the other normal to, the surface. When the load-penetration depth curves were converted to stress-strain curves the following was apparent: when the surfaces were loaded normal to the c axis, the response at the lowest loads was linear elastic—well described by a modulus of 320 GPa—followed by a clear yield point at approximately 4.5 GPa. And while the first cycle was slightly open, the next 4 on the same location were significantly harder, almost indistinguishable, and fully reversible. At the highest loads (500 mN) pop-ins due to delaminations between basal planes were observed. When pop-ins were not observed the indentations, for the most part, left no trace. When the load was applied parallel to the c axis, the initial response was again linear elastic (modulus of 320 GPa) followed by a yield point of approximately 4 GPa. Here again significant hardening was observed between the first and subsequent cycles. Each cycle resulted in some strain, but no concomitant increase in yield points. This orientation was even more damage tolerant than the orthogonal direction. This response was attributed to the formation of incipient kink bands that lead to the formation of regular kink bands. Remarkably, these dislocation-based mechanisms allow repeated loading of Ti3SiC2 without damage, while dissipating significant amounts of energy per unit volume, Wd, during each cycle. The values of Wd measured herein were in excellent agreement with corresponding measurements in simple compression tests reported earlier, confirming that the same mechanisms continue to operate even at the high (≈9 GPa) stress levels typical of the indentation experiments.

This is a preview of subscription content, access via your institution.

Change history

References

  1. 1.

    M.W. Barsoum, The MN+1AXN Phass: A new class of solids: Thermodynamically stable nanolaminates, Prog. Sol. State Chem., 28, 201 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    R. Pampuch, J. Lis, L. Stobierski, and M. Tymkiewicz, Solid combustion synthesis of Ti3SiC2, J. Eur. Ceram. Soc, 5, 283 (1989).

    CAS  Article  Google Scholar 

  3. 3.

    M.W. Barsoum and T. El-Raghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc. 79, 1953 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    T. El-Raghy, M.W. Barsoum, A. Zavaliangos, and S.R. Kalidindi, Processing and mechanical properties of Ti3SiC2: II, effect of grain size and deformation temperature, J. Am. Ceram. Soc. 82, 2855 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    T. El-Raghy, A. Zavaliangos, M.W. Barsoum, and S.R. Kalidindi, Damage mechanisms around hardness indentations in Ti3SiC2, J. Am. Ceram. Soc. 80, 513 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    C.J. Gilbert, D.R. Bloyer, M.W. Barsoum, T. El-Raghy, A.P. Tomsia, and R.O. Ritchie, Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2, Scr. Mater. 42, 761 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    M. Radovic, M.W. Barsoum, T. El-Raghy, and S. Wiederhorn, Tensile creep of fine-grained (3–5 μm) Ti3SiC2 in the 1000–1200 °C temperature range, Acta Mater. 49, 4103 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    I.M. Low, S.K. Lee, B. Lawn, and M.W. Barsoum, Contact damage accumulation in Ti3SiC2, J. Amer. Ceram. Soc. 81, 225 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Kuroda, I.M. Low, M.W. Barsoum, and T. El-Raghy, Indentation responses and damage characteristics of hot isostatically pressed Ti3SiC2, J. Aust. Ceram. Soc. 37, 95 (2001).

    CAS  Google Scholar 

  10. 10.

    M.W. Barsoum and T. El-Raghy, Room temperature ductile carbides, Met. Mater. Trans. 30 A, 363 (1999).

    Article  Google Scholar 

  11. 11.

    L. Farber, I. Levin, and M.W. Barsoum, HRTEM study of a lowangle boundary in plastically deformed Ti3SiC2, Philos. Mag. Lett. 79, 4103 (1999).

    Article  Google Scholar 

  12. 12.

    M.W. Barsoum, L. Farber, and T. El-Raghy, Dislocations, kink banks and room temperature plasticity of Ti3SiC2, Met. Mat. Trans. 30A, 1727 (1999).

    CAS  Article  Google Scholar 

  13. 13.

    M.W. Barsoum, M. Radovic, P. Finkel, and T. El-Raghy, Ti3SiC2 and ice, Appl. Phys. Lett. 79, 479 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    M.W. Barsoum, T. Zhen, S. Kalidindi, M. Radovic, and A. Murugaiah, Fully reversible dislocation-based compression deformation of Ti3SiC2 to 1 GPa, Nat. Mater. 2, 107 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    B.L. Adams, Orientation imaging microscopy: Emerging and future applications, Ultramicroscopy 67, 11 (1997).

    CAS  Article  Google Scholar 

  16. 16.

    D.P. Field, Recent advances in the application of orientation imaging, Ultramicroscopy 67, 1 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    B.J. Kooi, R.J. Poppen, N.J.M. Carvalho, J.Th.M. De Hosson, and M.W. Barsoum, Ti3SiC2: A damage tolerant ceramic studied with nano-indentations and transmission electron microscopy, Acta. Mater. 51, 2859 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    D. Tabor, Hardness of Metals (Clarendon Press, Oxford, U.K., 1951).

  19. 19.

    B.R. Lawn, N.P. Padture, H. Cai, and F. Guiberteau, Making ceramics “ductile”, Science 263, 1114 (1994).

    CAS  Article  Google Scholar 

  20. 20.

    F. Guiberteau, N.P. Padture, and B.R. Lawn, Effect of grain size on hertzian contact damage in alumina, J. Am. Ceram. Soc. 77, 1825 (1994).

    CAS  Article  Google Scholar 

  21. 21.

    J.S. Field and M.V. Swain, The indentation characterization of the mechanical properties of various carbon materials: Glassy carbon, coke, and pyrolytic Graphite, Carbon 34, 1357 (1996).

    CAS  Article  Google Scholar 

  22. 22.

    M.V. Swain and J.S. Field, Investigations of the mechanical properties of two glassy carbon materials using pointed indenters, Philos. Mag. A. 74, 1085 (1996)

  23. 23.

    M.V. Swain, Mater. Sci. Eng. Mechanical property characterization of small volumes of brittle materials with spherical tipped indenters, A253, 160 (1998).

    CAS  Google Scholar 

  24. 24.

    A.C. Fischer-Cripps, A review of analysis methods for sub-micron indentation testing, Vacuum 58, 569 (2000).

    CAS  Article  Google Scholar 

  25. 25.

    N. Iwashita, M.V. Swain, J.S. Field, N. Ohta, and S. Bitoh, Elasto-plastic deformation of glass-like carbons heat-treated at different temperatures, Carbon 39, 1525 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    M. Sakai, Y. Nakano, and S. Shimizu, Elastoplastic indentation on heat-treated carbons, J. Am. Ceram. Soc. 85, 1522 (2002).

    CAS  Article  Google Scholar 

  27. 27.

    B. Holm, R. Ahuja, and B. Johansson, Ab initio calculations of the mechanical properties of Ti3SiC2, Appl. Phys. Lett. 79, 1450 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    M.W. Barsoum, T. El-Raghy, C.J. Rawn, W.D. Porter, A. Payzant and, C. Hubbard, Thermal properties of Ti3SiC2, J. Phys. Chem. Solids 60, 429 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    F.C. Frank and A.N. Stroh, On the theory of kinking, Proc. Phys. Soc. 65, 811 (1952).

    Article  Google Scholar 

  30. 30.

    J.M. Molina-Aldareguia, J. Emmerlich, J. Palmquist, U. Jansson, and L. Hultman, Kink formation around indents in laminated Ti3SiC2 thin films studied in the nanoscale, Scri. Mater. 49, 155 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, and Y. Gogotsi, Kink bands, nonlinear elasticity and nanoindentations in graphite, (accepted for publication).

  32. 32.

    M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, and T. Zhen, Kinking nonlinear elastic solids, nanoindentations and geology, (submitted to Physical Review Letters).

  33. 33.

    S. Myhra, J.W.B. Summers and E.H. Kisi, Ti3SiC2—A layered ceramic exhibiting ultra-low friction, Mater. Let. 39, 6 (1999).

    CAS  Article  Google Scholar 

  34. 34.

    K.L. Johnson, Indentation Contact Mechanics (Cambridge University Press, Cambridge, 1985).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Murugaiah.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murugaiah, A., Barsoum, M.W., Kalidindi, S.R. et al. Spherical Nanoindentations and Kink Bands in Ti3SiC2. Journal of Materials Research 19, 1139–1148 (2004). https://doi.org/10.1557/JMR.2004.0148

Download citation