Enhanced Polarization Switching Characteristics of Pb(Zr0.5Ti0.5)O3–Pt Nanocomposite Thin Films


The effect of nanoscale Pt particles embedded in ferroelectric matrix on the polarization switching characteristics of Pb(Zr0.5Ti0.5)O3 (PZT) thin films of low thickness was investigated. Two different nanocomposite structures of PZT-Pt thin films were fabricated for the study. The first one incorporated a single layer of Pt nano-particles embedded in the PZT film, which was formed by annealing an ultrathin Pt layer that had been inserted into the middle of the deposited PZT. The other one had Pt nano-particles embedded uniformly and coherently in the lattice of the PZT matrix, which was generated by annealing the cosputtered films of PZT and Pt. The electric field applied on the films can be locally intensified near the embedded Pt particles, which markedly enhances the polarization switching characteristic of the above PZT-Pt nanocomposite films. Accordingly, a satisfactorily higher remanent polarization was obtained than exhibited by normal PZT films, but the coercive field was only slightly higher. However, adding an excess of Pt made the nanocomposite films too leaky to exhibit the enhancement. Moreover, the nanocomposite PZT-Pt films in the capacitor configuration of Pt/LaNiO3/PZT-Pt/LaNiO3/Pt also exhibited highly reliable polarization retention and fatigue resistance.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. Seike, K. Amanuma, S. Kobayashi, T. Tatsumi, H. Koike, and H. Hada, Polarization reversal kinetics of a lead zirconate titanate thin-film capacitor for nonvolatile memory, J. Appl. Phys. 88, 3445 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    M. Liu, H.K. Kim, and J. Blachere, Lead-zirconate-titanate-based metal/ferroelectric/insulator/semiconductor structure for nonvolatile memories, J. Appl. Phys. 91, 5985 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    C.A. Paz de Araujo, O. Auciello, and R. Ramesh, in Science and Technology of Integrated Ferroelectrics: Selected Papers from Eleven Years of the Proceedings of International Symposium on Integrated Ferroelectrics, edited by C.A. Paz de Araujo, O. Auciello, R. Ramesh, and G.W. Taylor (Gordun and Breach Science Publishers, 2000) p. xvii.

  4. 4.

    R. Ramesh, S. Aggarwal, and O. Auciello, Science and technology of ferroelectric films an heterostructures for non-volatile ferroelectric memories, Mater. Sci. Eng. 32, 191(2001).

  5. 5.

    R.R. Mehta, B.D. Silverman, and J.T. Jacobs, Depolarization fields in thin film ferroelectric films, J. Appl. Phys. 44, 3379 (1973).

    CAS  Article  Google Scholar 

  6. 6.

    A.K. Tagantesv, C. Pawlaczyk, K. Brooks, M. Landivar, E. Colla, and N. Setter, Depletion and depolarizing effects in ferroelectric thin films and their manifestations in switching and fatigue, Integr. Ferroelectr. 6, 309 (1995).

    Article  Google Scholar 

  7. 7.

    S.B. Majumder, B. Roy, and R.S. Katiyar, Effects of acceptor and donor dopants on polarization components of lead zirconate titanate thin films, Appl. Phys. Lett. 79, 239 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    T. Hirano, H. Kawai, H. Suzuki, S. Kaneko, and T. Wada, Effect of excess lead addition on processing of sol-gel derived lanthanummodified lead zirconate titanate thin film, Jpn. J. Appl. Phys. 38, 5354 (1999).

    CAS  Article  Google Scholar 

  9. 9.

    H. Tabata and T. Kawai, Dielectric properties of strained (Sr,Ca) TiO3/(Ba,Sr)TiO3 artificial lattices, Appl. Phys. Lett. 70, 321 (1997).

    CAS  Article  Google Scholar 

  10. 10.

    F. Le Marrec, R. Farhi, M. El, M. El Marrsi, J.L. Dellis, and M.G. Karkut, Ferroelectric PbTiO3/BaTiO3 superlattices: Growth anomalies and confined modes, Phys. Rev. B. 61, 6448 (2000).

    Article  Google Scholar 

  11. 11.

    R.E. Newnham, D.P. Skinner, and L.E. Cross, Connectivity and piezoelectric-pyroelectric composites, Mater. Res. Bull. 13, 525 (1978).

    CAS  Article  Google Scholar 

  12. 12.

    N. Duan, J.E. Elshof, and H. Verweij, Enhancement of dielectric and ferroelectric properties by addition of Pt particles to a lead zirconate titanate matrix, Appl. Phys. Lett. 77, 3263 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    M.S. Chen, T.B. Wu, and J.M. Wu, Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin film, Appl. Phys. Lett. 68, 1430 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    C.C. Yang, M.S. Chen, T.J. Hong, C.M. Wu, J.M. Wu, and T.B. Wu, Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3, Appl. Phys. Lett. 66, 2643 (1995).

    CAS  Article  Google Scholar 

  15. 15.

    C.K. Kwok and S.B. Desu, in Ferroelectric Thin Films II, edited by A.I. Kingon, E.R. Myers, and B. Tuttle (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992) p. 393.

  16. 16.

    T. Yamada, T. Ueda, T. Kitayama, Piezoelectric of high-content lead zirconate titanate/polymer composite, J. Appl. Phys. 53, 4328 (1982).

    CAS  Article  Google Scholar 

  17. 17.

    J.F.M. Cillessen, M.W.J. Prins, and R.M. Wolf, Thickness dependence of the switching voltage in all-oxide ferroelectric thinfilm capacitors prepared by pulsed laser deposition, J. Appl. Phys. 81, 2777 (1997).

    CAS  Article  Google Scholar 

  18. 18.

    H.M. Duiker, P.D. Beale, J.F. Scott, C.A. Paz de Araujo, B.M. Melnick, J.D. Cuchiaro, and L.D. McMillam, Fatigue and switching in ferroelectric memories: Theory and experiment, J. Appl. Phys. 68, 5783 (1990).

    CAS  Article  Google Scholar 

  19. 19.

    S.B. Desu and I.K. Yoo, ISIF92 Proceedings, 640 (1992).

Download references

Author information



Corresponding author

Correspondence to Cheng-Wei Cheng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheng, CW., Tseng, YC., Wu, TB. et al. Enhanced Polarization Switching Characteristics of Pb(Zr0.5Ti0.5)O3–Pt Nanocomposite Thin Films. Journal of Materials Research 19, 1043–1049 (2004). https://doi.org/10.1557/JMR.2004.0136

Download citation