Effects of surface treatment on the adhesion of copper to a hybrid polymer material

Abstract

The effects of various surface pretreatments on the adhesion of electroless and sputter-deposited copper metallizations to a hybrid polymer material were investigated. Without pretreatment, the adhesion between copper and the polymer was virtually zero. The adhesion of electroless copper to the polymer was poor regardless of the pretreatment used. However, the wet-chemical pretreatment of the polymer surface markedly increased the adhesion of sputtered copper to the polymer. It preferentially removed the inorganic part of the polymer and formed micropores on the surface. The plasma and reactive ion etching pretreatments, in turn, selectively etched away the organic part of the polymer and noticeably increased the hydrophilicity. Although this resulted in even higher increase in the surface free energy than was achieved with the chemical treatment, the granular surfaces became mechanically brittle. With the help of x-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and contact-angle measurements and with the recently developed pull test, the physicochemical changes of the wet-chemically pretreated polymer surfaces were demonstrated to have significant effects on the adhesion.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J.K. Kivilahti, J. Liu, J.E. Morris, T. Suga, and C.P. Wong, in Proceedings of the 52nd IEEE Electronic Component and Technology Conference, edited by M. Mcshane and S. Bezuk (IEEE, Piscataway, NJ, 2002), p. 955.

  2. 2.

    R. Tuominen and J.K. Kivilahti, in Proceeding of the International Conference on the 4th Adhesive Joining & Coating Technology in Electronics Manufacturing, edited by M. Hyytiainen (Institute of Electrical and Electronic Engineers, NY, 2000), p. 269.

  3. 3.

    S.N. Towle, H. Braunisch, C. Hu, R.D Emery, and J.V. Gilroy, in ASME International Mechanical Engineering Congress & Exposition, edited by E.P. Scott and J.C. Bischof (American Society of Mechanical Engineers, New York, 2001), p. 211.

  4. 4.

    T.F. Waris, R. Tuominen, and J.K. Kivilahti, in Proceedings of the 1st International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, edited by N. Kruse, C. Nieland, and R. Wenzel (IEEE, Piscataway, NJ, 2001), p. 218.

  5. 5.

    E. Griese, IEEE Trans. Adv. Packag. 24, 375 (2001).

    Article  Google Scholar 

  6. 6.

    Y.S. Liu, R.J. Wojnarowski, W.A. Hennessy, J. Rowlette, J. Stack, M. Kadar-Kallen, E. Green, Y. Liu, J.P. Bristow, A. Peczalski, L. Eldada, J. Yardley, R.M. Osgood, R. Scarmozzino, S.H. Lee, and S. Patra, in Proceedings of 47th IEEE Electronic Component and Technology Conference, edited by E.J. Vardaman (IEEE, Piscataway, NJ, 1997), p. 391.

  7. 7.

    K. Schmieder and K-J. Wolter, in Proceedings of the 50th IEEE Electronic Component and Technology Conference, edited by T.G. Reynolds III and M. Mcshane (IEEE, Piscataway, NJ, 2000), p. 749.

  8. 8.

    C.J. Brinker and G.W. Scherer, Sol-Gel Science, the Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).

  9. 9.

    D.C. Bradley, R.C. Mehrotra, and D.P. Gaul, Metal Alkoxides (Academic Press, New York, 1978).

  10. 10.

    J. Ge and J.K. Kivilahti, J. Appl. Phys. 92, 3007 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    J. Ge, M.P.K. Turunen, and J.K. Kivilahti, J. Polym. Sci. Part B: Polym. Phys. 41, 623 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    J. Ge, M.P.K. Turunen, and J.K. Kivilahti, Thin Solid Films 440, 198 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    C.F. Coombs, Coombs’ Printed Circuits Handbook (McGraw-Hill, New York, 2001).

  14. 14.

    C.A. Harper, High Performance Printed Circuit Boards (McGraw-Hill, New York, 2000).

  15. 15.

    R. Heinz, E. Klusmann, H. Meyer, and R. Schulz, Surf. Coat. Tech. 116–119, 886 (1999).

    Article  Google Scholar 

  16. 16.

    J.H.C. Van Heuven, IEEE Trans. Microw. Theory Tech. 22, 841 (1974).

    Article  Google Scholar 

  17. 17.

    K. Harth and H. Hibst, Surf. Coat. Technol. 59, 350 (1993).

    CAS  Article  Google Scholar 

  18. 18.

    F.D. Egitto and L.J. Matienzo, IBM J. Res. Develop. 38, 423 (1994).

    CAS  Article  Google Scholar 

  19. 19.

    J. Ge, R. Tuominen, and J.K. Kivilahti, J. Adhes. Sci. Tech. 15, 1133 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    D.K. Owens and R.C. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969).

    CAS  Article  Google Scholar 

  21. 21.

    M.P.K. Turunen, T. Laurila, and J.K. Kivilahti, J. Polym. Sci. Part B: Polym. Phys. 40, 2137 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1982).

  23. 23.

    J.R. Hollahan and A.T. Bell, Techniques and Application of Plasma Chemistry (Wiley, New York, 1974).

  24. 24.

    D.R. d’Agostino, Plasma Deposition, Treatment, and Etching of Polymers (Academic Press, San Diego, CA, 1990).

  25. 25.

    D.M. Manos and D.L. Flamm, Plasma Etching An introduction (Academic Press, San Diego, CA, 1989).

  26. 26.

    G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers (Wiley, Chichester, 1993).

  27. 27.

    R.J. Good and R.R. Stromberg, Techniques of Measuring Contact Angles, Surface and Colloid Science (Plenum Press, New York, 1979).

  28. 28.

    P.S. Swain and R. Lipowsky, Langmuir 14, 6772 (1998).

    CAS  Article  Google Scholar 

  29. 29.

    J. Drelich, J.D. Miller, and R.J. Good, J. Colloid Interface Sci. 179, 37 (1996).

    CAS  Article  Google Scholar 

  30. 30.

    G. Palasantzas and J.M. Hosson, Acta Mater. 49, 3533 (2001).

    CAS  Article  Google Scholar 

  31. 31.

    J. Lawrence, L. Li, and J.T. Spencer, Appl. Surf. Sci. 138–139, 388 (1999).

    Article  Google Scholar 

  32. 32.

    D.H. Kaelble and K.C. Uy, J. Adhes. 2, 50 (1970).

    CAS  Article  Google Scholar 

  33. 33.

    K.L. Mittal and H.R. Anderson, Acid-Base Interactions (VPS, Utrecht, 1991).

  34. 34.

    J.M. Burkstrand, J. Appl. Phys. 52, 4795 (1981).

    CAS  Article  Google Scholar 

  35. 35.

    J.F. Friedrich, W.E.S. Unger, A. Lippitz, I. Koprinarov, G. Kuhn, S. Weidner, and L. Vogel, Surf. Coat. Technol. 116–119, 772 (1999).

    Article  Google Scholar 

  36. 36.

    L.J. Martin and C.P. Wong, IEEE Trans. Compon. Packaging Technol. 24, 416 (2001).

    CAS  Article  Google Scholar 

  37. 37.

    E. Sacher, J.J. Pireaux, and S.P. Kowalczyk, Metallization of Polymers, ACS Symposium Series 440 (ACS, New York, 1990).

  38. 38.

    S. Sapiela, J. Cerny, J.E. Klemberg-Sapiela, and L. Martinu, J. Adhes. 42, 91 (1993).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Ge.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ge, J., Turunen, M.P.K., Kusevic, M. et al. Effects of surface treatment on the adhesion of copper to a hybrid polymer material. Journal of Materials Research 18, 2697–2707 (2003). https://doi.org/10.1557/JMR.2003.0376

Download citation