Crystallographic phases, phase transitions, and barrier layer formation in (1 − x) [Pb(Fe1/2Nb1/2)O3]−xPbTiO3

Abstract

Powders of (1 − x) Pb(Fe1/2Nb1/2)O3-xPbTiO3 (PFN-PT) with x = 0.00, 0.10, 0.13, 0.15, 0.20, and 0.25 were prepared by the conventional solid-state route. Structure of PFN-PT was tetragonal for x [H33356] 0.10, which indicates that the morphotropic phase boundary (MPB) may be between 0 < x < 0.10. The nature of phase transition in PFN-PT changed from diffuse ferroelectric to relaxor ferroelectric to normal ferroelectric on increasing the PT content. The effect of the PT content and sintering temperature on barrier layer formation in the PFN-PT system was studied using complex impedance spectroscopy. With increasing PT content, the possibility of the barrier layer formation decreased while with increasing sintering temperature, the barrier layer formation was promoted.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T.R. Shrout and A. Halliyal, Am. Ceram. Soc. Bull. 66(4), 704 (1987).

    CAS  Google Scholar 

  2. 2.

    L.E. Cross, Ferroelectrics 76, 241 (1987); L.E. Cross, Ferroelectrics 151, 305 (1994).

    CAS  Article  Google Scholar 

  3. 3.

    G.A Smolenskii, A.I. Agranovskaia, S.N. Popov, and V.A. Isupov, Sov. Phys.: Tech. Phys. 3, 1981 (1958); A.A. Bokov and S.M. Emelyanov, Phys. Status Solidi 164, K109 (1991).

    CAS  Google Scholar 

  4. 4.

    N. Yasuda and Y. Ueda, J. Phys.: Condense. Matter 1, 5179 (1989).

    CAS  Google Scholar 

  5. 5.

    S.B. Lee, K.H. Lee, and H. Kim, Jpn. J. Appl. Phys. 41, 5266 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    D. Pandey, Key Engineering Materials (Trans. Tech. Switzerland, 1995) 101–102, 177 (1995).

    Article  Google Scholar 

  7. 7.

    S. Ananta and N.W. Thomas, J. Euro. Ceram. Soc. 19, 1873 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971), p. 60.

  9. 9.

    Y. Sakabe, Am. Ceram. Soc. Bull. 66(9), 1338 (1987).

    CAS  Google Scholar 

  10. 10.

    M. Yokosuka, Jpn. J. Appl. Phys. 32, 1142 (1993).

    CAS  Article  Google Scholar 

  11. 11.

    S. Nomura and K. Doi, Jpn. J. Appl. Phys. 9, 716 (1970).

    CAS  Article  Google Scholar 

  12. 12.

    W. Heywang, Solid-State Electron. 3, 51 (1971).

    Article  Google Scholar 

  13. 13.

    T.R. Shrout, S.L. Swartz, and M.J. Haun, Am. Ceram. Soc. Bull. 63(6), 808 (1984).

    CAS  Google Scholar 

  14. 14.

    M. Yokosuka, Jpn. J. Appl. Phys. 38, 5488 (1999).

    CAS  Article  Google Scholar 

  15. 15.

    G.V. Ramani and D.C. Agarwal, Ferroelectrics 150, 291 (1993).

    Article  Google Scholar 

  16. 16.

    V.V.S.S.S. Sunder and A.M. Umarji, Mater. Res. Bull. 30, 427 (1995).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Gao, H. Xu, Y. Wu, T. He, G. Xu, and H. Luo, Jpn. J. Appl. Phys. 40, 4998 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    T. Hashimoto, K. Ishibashi, and T. Yako, J. Sol-Gel Sci. Tech. 9, 211 (1997).

    CAS  Google Scholar 

  19. 19.

    N. Ichinose and N. Kato, Jpn. J. Appl. Phys. 33, 5523 (1994); X. Gao, J. Xue, and J. Wang, J. Am. Ceram. Soc. 85, 565 (2002).

    Google Scholar 

  20. 20.

    A.P. Singh, S.K. Mishra, D. Pandey, Ch.D. Prasad, and R. Lal, J. Mater. Sci. 28, 5050 (1993).

    CAS  Article  Google Scholar 

  21. 21.

    S.L. Swartz and T.R. Shrout, Mater. Res. Bull. 17, 1245 (1982); C.C. Chiu, C.C. Li, and S.B. Desu, J. Am. Ceram. Soc. 74, 38 (1991).

    CAS  Article  Google Scholar 

  22. 22.

    D. Mohan, R. Prasad, and S. Banerjee, J. Mater. Sci. Lett. 15, 2149 (1996).

    CAS  Article  Google Scholar 

  23. 23.

    G.L. Platonov, L.A. Drobyshev, Y.Y. Tomashpolskii, and Y.N. Venevtsev, Sov. Phys. Crystallogr. 14, 692 (1970); D.N. Astrov, B.I. Al’schin, R.V. Zorin, and L.A. Drobyshev, Sov. Phys. JETP 28, 1123 (1969).

    Google Scholar 

  24. 24.

    V. Bonny, M. Bonin, P. Sciau, K.J. Schenk, and G. Chapuis, Solid State Commun. 102, 347 (1997); N. Lampis, P. Sciau, and A.G. Lehmann, J. Phys.: Condense. Matter 11, 3489 (1999).

    CAS  Article  Google Scholar 

  25. 25.

    F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon Press, London, 1962), p. 235.

  26. 26.

    Ragini, R. Ranjan, S.K. Mishra, and D. Pandey, J. Appl. Phys. 92, 3266 (2002).

    CAS  Article  Google Scholar 

  27. 27.

    A.K. Singh and D. Pandey, Phys. Rev. B 67, 064102 (2003).

    Article  Google Scholar 

  28. 28.

    D. Berlincourt, Sandia Corp. Technical Report (1960) available from U.S. Department of Commerce, Washington, D.C.

  29. 29.

    K. Zieleniec, K. Wojcik, M. Milata, and J. Kapusta, arXiv:Cond. Mat/0209289 (2002).

  30. 30.

    R.K. Dwivedi, D. Kumar, and O. Parkash, J. Phys. D: Appl. Phys. 33, 88 (2000).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dhananjai Pandey.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singh, S.P., Singh, A.K., Pandey, D. et al. Crystallographic phases, phase transitions, and barrier layer formation in (1 − x) [Pb(Fe1/2Nb1/2)O3]−xPbTiO3. Journal of Materials Research 18, 2677–2687 (2003). https://doi.org/10.1557/JMR.2003.0374

Download citation