Interface characteristics affecting electrical properties of Y-doped SiC

Abstract

Liquid-phase sintered SiC, doped with 3 vol% AlN, Al2OC, Y3Al5O12, revealed a variation in electrical resistivity of more than five orders of magnitude (<102-107 Ω cm) upon slight variations in the sintering process. The materials were characterized using various transmission electron microscopy techniques such as high-resolution transmission electron microscopy (HRTEM), Fresnel fringe imaging, analytical electron microscopy, and electron holography. The main focus of this study was to verify whether there is a correlation between interface structure and electrical resistivity. Scanning electron microscopy (SEM) of polished and plasma-etched surfaces showed interface features similar to those observed in Si3N4 ceramics containing amorphous grain-boundary films. Such films are expected to act as an insulating barrier for electric current. However, in contrast to the SEM results, HRTEM of SiC grain boundaries revealed no intergranular film in any of the SiC materials studied. Elemental analysis (i.e., energy dispersive x-ray and electron energy loss spectroscopy) of these “clean” SiC interfaces showed the segregation of secondary phase elements at grain boundaries. Electron holography and the Fresnel fringe technique were used to determine the change in the mean inner potential across SiC interfaces, which could be associated with the spatial charge distribution of a double Schottky barrier. The height of the potential barrier correlates with the electrical resistivity recorded via impedance spectroscopy.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. Persson and U. Lindefelt, J. Appl. Phys. 82, 5496 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    R.C. Glass, D. Henshall, V.F. Tsvetkov, and C.H. Carter, Jr., Phys. Stat. Sol. B 202, 149 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    H.M. Hobgood, R.C. Glass, G. Augustine, R.H. Hopkins, J. Jenny, M. Skowronski, W.C. Mitchel, and M. Roth, Appl. Phys. Lett. 66, 1364 (1995).

    CAS  Article  Google Scholar 

  4. 4.

    J.R. Jenny, M. Skowronski, W.C. Mitchel, H.M. Hobgood, R.C. Glass, G. Augustine, and R.H. Hopkins, J. Appl. Phys. 78, 3839 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    R.R. Lee and W.C. Wei, Ceram. Eng. Sci. Proc. 11, 1094 (1990).

    CAS  Article  Google Scholar 

  6. 6.

    H-J. Kleebe, J. Eur. Ceram. Soc. 10, 151 (1992).

    CAS  Article  Google Scholar 

  7. 7.

    M. Keppeler, H-G. Reichert, J.M. Broadley, G. Thurn, I. Wiedmann, and F. Aldinger, J. Eur. Ceram. Soc. 18, 521 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    S.G. Lee, Y-W. Kim, and M. Mitomo, J. Am. Ceram. Soc. 84, 1347 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    G. Rixecker, I. Wiedmann, A. Rosinus, and F. Aldinger, J. Eur. Ceram. Soc. 21, 1013 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    Y-W. Kim, M. Mitomo, and T. Nishimura, J. Am. Ceram. Soc. 85, 1007 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    N.P. Padture, J. Am. Ceram. Soc. 77, 519 (1994).

    CAS  Article  Google Scholar 

  12. 12.

    J.J. Cao, W.J. Moberly Chan, L.C. De Jonghe, C.J. Gilbert, and R.O. Ritchie, J. Am. Ceram. Soc. 79, 461 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    M. Omori and H. Takei, J. Am. Ceram. Soc. 65, C92 (1982).

    CAS  Article  Google Scholar 

  14. 14.

    M. Omori and H. Takei, U.S. Patent No. 4 502 983 (1985).

  15. 15.

    M. Omori and H. Takei, U.S. Patent No. 4 564 490 (1986).

  16. 16.

    L.S. Sigl and H-J. Kleebe, J. Am. Ceram. Soc. 76, 773 (1993).

    CAS  Article  Google Scholar 

  17. 17.

    R.A Cutler and T.B. Jackson, in Ceramic Materials and Components for Engines, Proceedings of the Third International Symposium, edited by V.J Tennery (American Ceramic Society, Westerville, OH, 1989), pp. 309–318.

  18. 18.

    W.D.G. Böcker and R.J. Hamminger, in Pulvermetallurgie in Wissenschaft und Praxis, Vol. 6, edited by H. Kolaska (Verlag Schmid GmbH, Freiburg i. Br., FRG, 1990), pp. 291–317.

  19. 19.

    M.A. Mulla and V.D. Krstic, Am. Ceram. Bull. 70, 439 (1991).

    CAS  Google Scholar 

  20. 20.

    K. Negita, J. Am. Ceram. Soc. 69, C-308 (1986).

    Article  Google Scholar 

  21. 21.

    M.A. Mulla and V.D. Krstic, Acta Metall. Mater. 42, 303 (1994).

    CAS  Article  Google Scholar 

  22. 22.

    N.P. Padture and B.R. Lawn, J. Am. Ceram. Soc. 77, 2518 (1994).

    CAS  Article  Google Scholar 

  23. 23.

    J.L. Huang, A.C. Hurford, R.A. Cutler, and A.V. Virkar, J. Mater. Sci. 21, 1448 (1986).

    CAS  Article  Google Scholar 

  24. 24.

    T. Grande, H. Sommerset, E. Hagen, K. Wiik, and M-A. Einarsrud, J. Am. Ceram. Soc. 80, 1047 (1997).

    CAS  Article  Google Scholar 

  25. 25.

    E.J. Winn and W.J. Clegg, J. Am. Ceram. Soc. 82, 3466 (1999).

    CAS  Article  Google Scholar 

  26. 26.

    V.V. Pujar, R.P. Jensen, and N.P. Padture, J. Mater. Sci. Lett. 19, 1011 (2000).

    CAS  Article  Google Scholar 

  27. 27.

    H-W. Jun, H-W. Lee, G-H. Kim, H. Song, and B-H. Kim, Ceram. Eng. Sci. Proc. 18, 487 (1997).

    CAS  Article  Google Scholar 

  28. 28.

    R.E. Loehman, J. Am. Ceram. Soc. 62, 491 (1979).

    CAS  Article  Google Scholar 

  29. 29.

    S. Sakka, J. Non-Cryst. Solids 181, 215 (1995).

    CAS  Article  Google Scholar 

  30. 30.

    G. Pezzotti, H. Nishimura, K. Ota, and H-J. Kleebe, J. Am. Ceram. Soc. 84, 2371 (2001).

    CAS  Article  Google Scholar 

  31. 31.

    P.O. Robert, J. Fouletier, and L. Menneron, J. Eur. Ceram. Soc. 19, 875 (1999).

    CAS  Article  Google Scholar 

  32. 32.

    J.R. MacDonald, Solid State Ionics 13, 147 (1984).

    CAS  Article  Google Scholar 

  33. 33.

    R.L. Hurt and J.R. MacDonald, Solid State Ionics 20, 111 (1986).

    Article  Google Scholar 

  34. 34.

    D.R. Clarke, J. Am. Ceram. Soc. 70, 15 (1987).

    CAS  Article  Google Scholar 

  35. 35.

    H-J. Kleebe, J. Eur. Ceram. Soc. 10, 151 (1992).

    CAS  Article  Google Scholar 

  36. 36.

    W.J. Moberlychan and L.C. De Jonghe, Acta. Met. 46, 2471 (1998).

    CAS  Article  Google Scholar 

  37. 37.

    S. Turan and K.M. Knowles, Mater. Sci. Forum 294–296, 313 (1999).

    Google Scholar 

  38. 38.

    R.W. Carpenter, W. Braue, and R.A. Cutler, J. Mater. Res. 6, 1937 (1991).

    CAS  Article  Google Scholar 

  39. 39.

    M. Bartsch, U. Messerschmidt, F. Appel, and P. Werner, in Electron Microscopy in Plasticity and Fracture Research of Materials, edited by U. Messerschmidt, F. Appel, J. Heydenreich, and V. Schmidt (Academic-Verlag, Berlin, Germany, 1989), pp. 239–244.

  40. 40.

    D.R. Clarke, Ultramicroscopy 4, 33 (1979).

    CAS  Article  Google Scholar 

  41. 41.

    O.L. Krivanek, T.M. Shaw, and G. Thomas, J. Appl. Phys. 50, 4223 (1979).

    CAS  Article  Google Scholar 

  42. 42.

    M.K. Cinibulk, H-J. Kleebe, and M. Rühle, J. Am. Ceram. Soc. 76, 426 (1993).

    CAS  Article  Google Scholar 

  43. 43.

    J.N. Ness, W.M. Stobbs, and T.F. Page, Phil. Mag. A 54, 679 (1986).

    CAS  Article  Google Scholar 

  44. 44.

    D.R. Clarke, Ultramicroscopy 4, 33 (1979).

    CAS  Article  Google Scholar 

  45. 45.

    Q. Jin, D.S. Wilkinson, and G.C. Weatherly, J. Am. Ceram. Soc. 18, 2281 (1998).

    CAS  Article  Google Scholar 

  46. 46.

    F.M. Ross and W.M. Stobbs, Phil. Mag. 63, 37 (1991).

    Article  Google Scholar 

  47. 47.

    D. Gabor, Proc. Phys. Soc. A 197, 454 (1949).

    Google Scholar 

  48. 48.

    G. Möllenstedt and H. Düker, Zeitschrift für Physik 145, 377 (1956).

    Article  Google Scholar 

  49. 49.

    H. Lichte, “Bildebenen-Off-Axis Elektronenholographie atomarer Strukturen,” Habilitationsschrift Universität Tübingen (University of Tübingen, Tübingen, Germany, 1987).

  50. 50.

    T. Troffer, M. Schadt, T. Frank, H. Ith, G. Pensl, J. Heindl, H.P. Strunk, and M. Maier, Phys. Stat. Sol. A 162, 277 (1997).

    CAS  Article  Google Scholar 

  51. 51.

    M. Gajdardziska-Josifovska and A.H. Carim, in Introduction to Electron Holography, edited by E. Völkl, L.F. Allard, and D.C. Joy (Kluwer Academic, New York, 1999), pp. 267–293.

  52. 52.

    V. Ravikumar, R.P. Rodrigues, and V.P. Dravid, Phys. Rev. Lett. 75, 4063 (1995).

    CAS  Article  Google Scholar 

  53. 53.

    D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999).

    CAS  Article  Google Scholar 

  54. 54.

    G. Pike, Semiconducting Polycrystalline Ceramics, in Material Science and Technology (VCH Verlagsgesellschaft, Weinheim, Germany, 1994), pp. 731–753

  55. 55.

    D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999).

    CAS  Article  Google Scholar 

  56. 56.

    V. Ravikumar, R.P. Rodrigues, and V.P. Dravid, J. Am. Ceram. Soc. 80, 1131 (1997).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Siegelin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siegelin, F., Kleebe, HJ. & Sigl, L.S. Interface characteristics affecting electrical properties of Y-doped SiC. Journal of Materials Research 18, 2608–2617 (2003). https://doi.org/10.1557/JMR.2003.0365

Download citation