Accurate measurement of tip-sample contact size during nanoindentation of viscoelastic materials

Abstract

Polypropylene (PP) and amorphous selenium (a-Se) were used as prototype materials at room temperature to explore the problems that may exist in the accurate measurement of the reduced modulus of viscoelastic materials using depth-sensing nanoindentation. As has been reported previously by others, we observed that a “nose” in the load-displacement curve may occur during unloading, indicating significant creep effects at the onset of unloading. To accurately measure the elastic modulus in viscoelastic materials like PP or a-Se, both the contact stiffness and the contact area at the onset of unloading must be determined accurately. The issue of removing the influence of creep on the measurement of the contact stiffness using the Oliver-Pharr method has been addressed in a previous paper by Feng and Ngan. In this work, the effect of creep on contact-depth measurement is considered. Removal of creep effects in both contact stiffness and contact-area measurement leads to satisfactory prediction of the reduced moduli in PP and a-Se.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    CAS  Article  Google Scholar 

  2. 2.

    G.M. Pharr and A. Bolshakov, J. Mater. Res. 17, 2660 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    G. Feng and A.H.W. Ngan, J. Mater. Res. 17, 660 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    G. Feng and A.H.W. Ngan, in Fundamentals of Nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q7.1.1.

    Google Scholar 

  5. 5.

    M. Sakai and S. Shimizu, J. Non-Cryst. Solids 282, 236 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    S.A. Syed Asif and J.B. Pethica, Philos. Mag. A 76, 1105 (1997).

    Article  Google Scholar 

  7. 7.

    B.D. Beake and G.J. Leggett, Polymer 43, 319 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    T. Chudoba and F. Richter, Surf. Coat. Technol. 148, 191 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    X. Li and B. Bhushan, Mater. Charact. 47, 1 (2002).

    Google Scholar 

  10. 10.

    I.M. Low, Mater. Res. Bull. 33, 1753 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    T.K. Harris, E.J. Brookes, and R. Daniel, Int. J. Refract. Met. Hard Mater. 17, 33 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    S.A. Syed Asif and J.B. Pethica, in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, J-E. Sundgren, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1996), p. 201.

    Google Scholar 

  13. 13.

    A.A. Elmustafa and D.S. Stone, Acta Mater. 50, 3641 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    M. Sakai, S. Shimizu, N. Miyajima, Y. Tanabe, and E. Yasuda, Carbon 39, 605 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    B.N. Lucas and W.C. Oliver, Metall. Mater. Trans. A 30A, 601 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    T.Y. Tsui and G.M. Pharr, J. Mater. Res. 14, 292 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    A.H.W. Ngan and B. Tang, J. Mater. Res. 17, 2604 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  19. 19.

    S. Etienne, G. Guenin, and J. Perez, J. Phys. D 12, 2189 (1979).

    CAS  Article  Google Scholar 

  20. 20.

    M.F. Ashby and D.R.H. Jones, Engineering Materials (Pergamon Press, Oxford, U.K., 1986), p. 31.

    Google Scholar 

  21. 21.

    R. Böhmer and C.A. Angell, Phys. Rev. B 48, 5857 (1993).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Tang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tang, B., Ngan, A.H.W. Accurate measurement of tip-sample contact size during nanoindentation of viscoelastic materials. Journal of Materials Research 18, 1141–1148 (2003). https://doi.org/10.1557/JMR.2003.0156

Download citation