Nanostructural study of sol-gel-derived zirconium oxides


Two sol-gel derived zirconia powders were prepared at pH = 0.5 and pH = 5.5. They were investigated as a function of temperature using mainly perturbed angular correlation spectroscopy. The aim was to elucidate the relationship between the nanoscopic configurations around Zr4+ ions and the morphology and structure of the powders. The highly porous material resulting from the solution at higher pH could be described mainly by defective and disordered, very hydrolyzed tetragonal arrays. As temperature increased, the amount of these arrays decreased while they became increasingly asymmetric, thus suggesting their superficial localization. The easy removal of hydroxyls led to the early appearance of the monoclinic phase. The gel obtained from the precursor at pH = 0.5 was entirely described by configurations still involving organic residues. After their calcination, the powder underwent a well-defined two-step hydroxyl removal thermal process leading to the crystallization of the tetragonal and the monoclinic phases. The thermal stability of the metastable tetragonal phase in the investigated powders seems to be controlled by their different capability to absorb oxygen.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1.

    R.C. Garvie, J. Phys. Chem. 82, 218 (1978).

    CAS  Article  Google Scholar 

  2. 2.

    F. Wu and S. Yu, J. Mater. Sci. 25, 970 (1990).

    CAS  Article  Google Scholar 

  3. 3.

    P. Kountouros and G. Petzow, in Science and Technology of Zirconia V, edited by S.P.S. Baldwal, M.J. Bannister, and R.H.J. Hannink (Technomic Publishing Company, Lancaster, PA, 1993), p. 30.

    Google Scholar 

  4. 4.

    R. Gómez, T. López, X. Bokhimi, E. Muñoz, J.L. Boldú, and O. Novaro, J. Sol-Gel Sci. Technol. 11, 309 (1988).

    Article  Google Scholar 

  5. 5.

    C. Stöcker and A. Baiker, J. Non-Cryst. Solids. 223, 165 (1998).

    Article  Google Scholar 

  6. 6.

    B.E. Yoldas, J. Mater. Sci. 21, 1080 (1986).

    CAS  Article  Google Scholar 

  7. 7.

    M. Nabavi, S. Doeuff, C. Sanchez, and J. Livage, J. Non Cryst. Solids. 121, 31 (1990).

    CAS  Article  Google Scholar 

  8. 8.

    C. Sanchez, J. Livage, M. Henry, and F. Babonneau, J. Non Cryst. Solids. 100, 65 (1988).

    CAS  Article  Google Scholar 

  9. 9.

    R. Srinivasan, M. Harris, S.F. Simpson, R.J. De Angelis, and B.H. Burtron, J. Mater. Res. 3, 787 (1988).

    CAS  Article  Google Scholar 

  10. 10.

    B.H. Davis, J. Am. Ceram. Soc. 67, C168 (1984).

    CAS  Article  Google Scholar 

  11. 11.

    J.C. Debsikdar, J. Non Cryst. Solids. 87, 343 (1986).

    CAS  Article  Google Scholar 

  12. 12.

    M.C. Caracoche, P.C. Rivas, R. Caruso, E. Benavídez, O. de Sanctis, M.M. Cervera, and M.E. Escobar, J. Am. Ceram. Soc. 83, 377 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    A. Baudry, P. Boyer, and A.L. de Oliveira, Hyperfine Interactions. 10, 1003 (1981).

    CAS  Article  Google Scholar 

  14. 14.

    J.A. Gardner, H. Jaeger, H.T. Su, W.H. Warnes, and J.C. Haygarth, Physica B150, 223 (1988).

    Google Scholar 

  15. 15.

    R. Caruso, E. Benavídez, O. de Sanctis, M.C. Caracoche, P.C. Rivas, M.M. Cervera, A. Caneiro, and A. Serquis, J. Mater. Res. 12, 2594 (1997).

    CAS  Article  Google Scholar 

  16. 16.

    H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (John Wiley and Sons, New York, 1974), Ch. 9.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mariía C. Caracoche.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caracoche, M.C., Rivas, P.C., Cervera, M.M. et al. Nanostructural study of sol-gel-derived zirconium oxides. Journal of Materials Research 18, 208–215 (2003).

Download citation