Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials

Abstract

A model is developed that describes the sharp indentation behavior of time-dependent materials. The model constitutive equation is constructed from a series of quadratic mechanical elements, with independent viscous (dashpot), elastic (spring), and plastic (slider) responses. Solutions to this equation describe features observed under load-controlled indentation of polymers, including creep, negative unloading tangents, and loading-rate dependence. The model describes a full range of viscous–elastic–plastic responses and includes as bounding behaviors time-independent elastic–plastic indentation (appropriate to metals and ceramics) and time-dependent viscous–elastic indentation (appropriate to elastomers). Experimental indentation traces for a range of olymers with different material properties (elastic modulus, hardness, viscosity) are econvoluted and ranked by calculated time constant. Material properties for these polymers, deconvoluted from single load–unload cycles, are used to predict the indentation load–displacement behavior at loading rates three times slower and faster, as well as the steady-state creep rate under fixed load.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  2. 2.

    W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    CAS  Article  Google Scholar 

  3. 3.

    B. Wolf, Cryst. Res. Technol. 25, 377 (2000).

    Article  Google Scholar 

  4. 4.

    J.S. Field and M.V. Swain, J. Mater. Res. 10, 101 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    Y-T. Cheng and C-M. Cheng, J. App. Phys. 84, 1284 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, S.P. Baker, and N. Burnham (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998).

    Google Scholar 

  7. 7.

    Fundamentals of Nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001).

    Google Scholar 

  8. 8.

    J-Y. Rho, M.E. Roy, T.Y. Tsui, and G.M. Pharr, J. Biomed. Mater. Res. 45, 48 (1999).

    CAS  Article  Google Scholar 

  9. 9.

    P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, and S.A. Goldstein, J. Biomech. 32, 1005 (1999).

    CAS  Article  Google Scholar 

  10. 10.

    E. Mahoney, A. Holt, M. Swain, and N. Kilpatrick, J. Dent. 28, 589 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    B.J. Briscoe, K.S. Sebastian, and S.K. Sinha, Philos. Mag. A 74, 1159 (1996).

    CAS  Article  Google Scholar 

  12. 12.

    B.J. Briscoe, L. Fiori, and E. Pelillo, J. Phys. D: Appl. Phys. 31, 2395 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    L. Cheng, X. Xia, W. Yu, L.E. Scriven, and W.W. Gerberich, J. Polym. Sci. B: Polym. Phys. 38, 10 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    M. Sakai and S. Shimizu, J. Non-Cryst. Solids 282, 236 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    K.B. Yoder, S. Ahuja, K.T. Dihn, D.A. Crowson, S.G. Corcoran, L. Cheng, W.W. Gerberich, in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, S.P. Baker, and N. Burnham (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 205.

    Google Scholar 

  16. 16.

    S. Shimizu, T. Yanagimoto, and M. Sakai, J. Mater. Res. 14, 4075 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    G. Feng and A.H.W. Ngan, J. Mater. Res. 17, 660 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    B.N. Lucas, W.C. Oliver, G.M. Pharr, L-L. Loubet, in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, J-E. Sundgren, and S.P. Baker . (Mater. Res. Soc. Symp. Proc. 436, Warrendale, PA, 1997), p. 233.

    Google Scholar 

  19. 19.

    M.J. Adams, D.M. Gorman, and S.A. Johnson, in Fundamentals of Nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q7.10.1.

    Google Scholar 

  20. 20.

    M. Oyen-Tiesma, Y.A. Toivola, and R.F. Cook, in Fundamentals of Nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q1.5.1.

    Google Scholar 

  21. 21.

    W.N. Findley, J.S. Lai, and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials (Dover Publications, New York, 1989).

    Google Scholar 

  22. 22.

    I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  23. 23.

    R.F. Cook and G.M. Pharr, J. Hard Mater. 5, 179 (1994).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Oyen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oyen, M.L., Cook, R.F. Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. Journal of Materials Research 18, 139–150 (2003). https://doi.org/10.1557/JMR.2003.0020

Download citation