Stability of the Mg65Y10Cu15Ag10 metallic glass in neutral and weakly acidic media

Abstract

The corrosion behavior of the bulk glass-forming Mg65Y10Cu15Ag10 alloy was studied in neutral and weakly acidic media. Potentiodynamic polarization studies in cyclic and linear modes were carried out in electrolytes with a pH = 7, containing different anions. The alloy corroded freely in electrolytes with sulfate and pthalate ions, whereas passivity was observed in the electrolyte with borate ions. Further tests were performed in boric-acid-added borate buffer solution with pH = 7, 6, and 5. From Tafel characteristics, corrosion potentials and corrosion current densities were estimated. The data were compared with those of the ternary Mg65Y10Cu15 metallic glass. Potentiostatic anodic polarization tests were conducted on the Mg65Y10Cu15Ag10 alloy in boric-acid-added borate buffer solution with pH = 7 at two different potentials, 800 and 300 mV, saturated calomel electrode, which revealed different current transient characteristics. Auger electron spectroscopy was employed to characterize the anodically generated passive layers. The depth distributions of the elements as well as their chemical states were detected to be different for layers formed in electrolytes (i) with different pH values (8.4 and 7) of the same anion, (ii) with the same pH value but containing different anions (borate, sulfate, and pthalate), and (iii) with the same pH value and anion (borate) but at two different anodic potentials.

References

  1. 1.

    B.L. Mordike and T. Ebert, Mater. Sci. Eng. A 302, 37 (2001).

    Article  Google Scholar 

  2. 2.

    R.F. Decker, Adv. Mater. Proc. 9, 31 (1998).

    Google Scholar 

  3. 3.

    G.L. Song and A. Atrens, Adv. Eng. Mater. 1, 11 (1999).

    CAS  Article  Google Scholar 

  4. 4.

    A. Inoue, T. Zhang, and T. Matsumoto, Mater. Trans., JIM 31, 177 (1990).

    CAS  Article  Google Scholar 

  5. 5.

    A. Peker and W.L. Johnson, Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  6. 6.

    A. Inoue and T. Matsumoto, Mater. Sci. Eng. A 173, 1 (1993).

    Article  Google Scholar 

  7. 7.

    H.G. Kang, E.S. Park, W.T. Kim, and H.K. Cho, Mater. Trans., JIM 41, 846 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    A. Gebert, K. Buchholz, A. Leonhard, K. Mummert, J. Eckert, and L. Schultz, Mater. Sci. Eng. A 267, 294 (1999).

    Article  Google Scholar 

  9. 9.

    V. Schroeder, C.J. Gilbert, and R.O. Ritchie, Scripta Mater. 38, 1481 (1998).

    CAS  Article  Google Scholar 

  10. 10.

    S. Hiromoto, A-P. Tsai, M. Sumita, and T. Hanawa, Corros. Sci. 42, 2193 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    A. Gebert, U. Wolff, A. John, and J. Eckert, Scripta Mater. 43, 279 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    A. Gebert, U. Wolff, A. John, J. Eckert, and L. Schultz, Mater. Sci. Eng. A 299, 125 (2001).

    Article  Google Scholar 

  13. 13.

    R.V. Subba Rao, U. Wolff, S. Baunack, J. Eckert, and A. Gebert, Corros. Sci. 45, 817 (2002).

    Article  Google Scholar 

  14. 14.

    H.H. Uhlig and J.R. Gilman, Z. Phys. Chem. 226, 127 (1964).

    CAS  Google Scholar 

  15. 15.

    Y. Zuo, H. Wang, J. Zhao, and J. Xiong, Corros. Sci. 44, 13 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    G.M. Florianovich, Y.M. Ko¨lotyrkin, D. Kononova, in Proceedings of the 4th ICMC-Amsterdam, edited by N.E. Hamner (NACE, Amsterdam, The Netherlands, 1972), p. 189.

    Google Scholar 

  17. 17.

    S. Virtanen, P. Schmuki, M. Bu¨chler, H. Isaacs, J. Electrochem. Soc. 146, 4087 (1999).

    CAS  Article  Google Scholar 

  18. 18.

    E.M.A. Martini and I.L. Muller, J. Braz. Chem. Soc. 10, 505 (1999).

    CAS  Article  Google Scholar 

  19. 19.

    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, Oxford, London, U.K. 1966), p. 396.

    Google Scholar 

  20. 20.

    S.W. Gaarenstroom, J. Vac. Sci. Technol. 16, 600 (1979).

    CAS  Article  Google Scholar 

  21. 21.

    S. Hofmann and J. Steffen, Surf. Interface Anal. 14, 59 (1989).

    CAS  Article  Google Scholar 

  22. 22.

    J.S. Solomon, Thin Solid Films 154, 11 (1987).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Gebert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rao, R.V.S., Wolff, U., Baunack, S. et al. Stability of the Mg65Y10Cu15Ag10 metallic glass in neutral and weakly acidic media. Journal of Materials Research 18, 97–105 (2003). https://doi.org/10.1557/JMR.2003.0014

Download citation