Microwave sintering and properties of AlN/TiB2 composites


The effect of TiB2 on the densification behavior and properties of microwave-sintered AlN/TiB2 ceramic was investigated. The densification of the composite was significantly retarded in nitrogen atmosphere due to strong nitridation of TiB2 compared to sintering in argon atmosphere. The densities of the AlN/TiB2 composites containing different amounts of TiB2 all reached 99% of the theoretical density during 2 h of sintering at 1850 and 1900 °C. Microstructure analysis revealed that the TiB2 particles were dispersed in the AlN matrix while AlN grains retained its contiguity. This microstructure led to a composite with superior properties; thermal conductivity as high as 149 W/(m K) was achieved. The microwave sintered composites are harder and tougher than pure AlN. Microwave-sintered AlN/TiB2 composite is a promising material for structural applications in which high thermal conductivity and controlled dielectric loss are important.

This is a preview of subscription content, access via your institution.


  1. 1.

    D.K. Hale, J. Mater. Sci. 11, 2105 (1976).

    CAS  Article  Google Scholar 

  2. 2.

    H. Hatta and M. Taya, Int. J. Eng. Sci. 24, 1159 (1986).

    CAS  Article  Google Scholar 

  3. 3.

    J.P. Calame and D.K. Abe, Applications of Advanced Materials Technologies to Vacuum Electronic Devices, Proceedings of the IEEE (IEEE, Piscataway, NJ, 1999), Vol. 87, pp. 840–864.

    Google Scholar 

  4. 4.

    M.P. Borom, G.A. Slack, and J.W. Szymaszek, Am. Ceram. Soc. Bull. 51(11), 852 (1972).

    CAS  Google Scholar 

  5. 5.

    H. Bhatt, K.Y. Donaldson, D.P.H. Hasselman, and R.T. Bhatt, J. Mater. Sci. 27, 6653 (1992).

    CAS  Article  Google Scholar 

  6. 6.

    D.P.H. Hasselman, in 20th International Thermal Conductivity Conference, edited by D.P.H. Hasselman (Plenum Press, New York, 1989), pp. 141–152.

    Google Scholar 

  7. 7.

    E. Behrens, J. Compos. Mater. 2, 2 (1968).

    Article  Google Scholar 

  8. 8.

    G-f. Xu, T. Olorunyolemi, Y. Carmel, O.C. Wilson, Jr., and I.K. Lloyd, J. Mater. Res. 17(11), 2837 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    G-f. Xu, Y. Carmel, T. Olorunyolemi, O.C. Wilson, Jr., and I.K. Lloyd, J. Am. Ceram. Soc. (in press).

  10. 10.

    G.R. Antis, P. Chantikul, B.R. Lawn, and D.B. Marshall, J. Am. Ceram. Soc. 64(9), 533 (1981).

    Article  Google Scholar 

  11. 11.

    G.V. Samsonov and I.M. Vinitskii, Refractory Compounds Handbook (in Russ.) (Mettalurgiya, Moscow, U.S.S.R., 1976).

    Google Scholar 

  12. 12.

    Advanced Materials & Powders Handbook (American Ceramic Society Bulletin, Westerville, OH, 1999), pp. 69–81.

  13. 13.

    C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1997).

    Google Scholar 

  14. 14.

    D.P. Hasselman and E.F. Johnson, J. Compos. Mater. 21(5), 508 (1987).

    Article  Google Scholar 

  15. 15.

    Y. Benveniste, J. Appl. Phys. 61, 2840 (1987).

    CAS  Article  Google Scholar 

  16. 16.

    T.B. Jackson, A.V. Vircar, K.L. More, R.B. Dinwiddie, Jr., and R.A. Cutler, J. Am. Ceram. Soc. 80, 1421 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    E.K. Chang and M.J. Kirschner, J. Mater. Sci. Lett. 15, 1580 (1996).

    CAS  Google Scholar 

  18. 18.

    H. Buhr, G. Müller, H. Wiggers, F. Aldinger, P. Foley, A. Roosen, J. Am. Ceram. Soc. 74, 718 (1991).

    CAS  Article  Google Scholar 

  19. 19.

    L.D. Bentsen, D.P.H. Hasselman, and R. Ruh, J. Am. Ceram. Soc. 66, C-4 (1983).

    Article  Google Scholar 

  20. 20.

    W. Rafanieo, K. Cho, and A. Vircar, J. Mater. Sci. 16(12), 3479 (1981).

    Article  Google Scholar 

  21. 21.

    S.V. Schneider, M. Desmaison-brut, G. Richter, F. Porz, C. Gault, Key Eng. Mater. 132–136, 524 (1997).

    Article  Google Scholar 

  22. 22.

    K.T. Faber and A.G. Evans, Acta Metall. 31, 565 (1983).

    Article  Google Scholar 

  23. 23.

    A.G. Evans and K.T. Faber, J. Am. Ceram. Soc. 67, 394 (1981).

    Article  Google Scholar 

  24. 24.

    M. Tara, S. Hayashi, A.S. Kobayashi, and H.S. Yoon, J. Am. Ceram. Soc. 73, 1382 (1990).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Geng-fu Xu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, Gf., Carmel, Y., Olorunyolemi, T. et al. Microwave sintering and properties of AlN/TiB2 composites. Journal of Materials Research 18, 66–76 (2003). https://doi.org/10.1557/JMR.2003.0010

Download citation