Thermal stability, crystallization kinetics, and grain growth in an amorphous Al85Ce5Ni8Co2 alloy

Abstract

Thermal stability and crystallization kinetics of the melt-quenched amorphous Al85Ce5Ni8Co2 alloy were investigated by x-ray diffraction and differential scanning calorimetry (DSC). The glass transition was followed by a supercooled liquid region (21 °C) and then by a two-step crystallization process. The final microstructure contained Al3Ce, α–Al, Al3Ni, and Al9Co2 phases. Isothermal annealing of the as-quenched samples in the range of 275–285 °C showed that both crystallization reactions occurred through a nucleation and growth process. Continuous heating DSC measurements following pre-anneals for different times were also carried out to study the crystallization kinetics and the stability of the material. The Avrami analysis of the isothermal DSC-curves revealed that the 3-dimensional nucleation and growth process became more dominant with increasing annealing temperature. The average specific grain boundary energy corresponded to high-angle grain boundaries and indicated independent nucleation events.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Inoue, K. Ohtera, A.P. Tsai, and T. Masumoto, Jpn. J. Appl. Phys. 27, L289 (1988).

    Google Scholar 

  2. 2.

    Y. He, S.J. Pooh, and G.J. Shiflet, Science 241, 1640 (1988).

    CAS  Article  Google Scholar 

  3. 3.

    A. Inoue, K. Ohtera, A.P. Tsai, and T. Masumoto, Jpn. J. Appl. Phys. 27, L479 (1988).

    CAS  Article  Google Scholar 

  4. 4.

    W.T. Kim. M. Gogebakan, and B. Cantor, Mater. Sci. Eng. A 226–228, 178 (1997).

    Article  Google Scholar 

  5. 5.

    X.Y. Jiang, Z.C. Zhong, and A.L. Greer, Philos. Mag. B 76, 419 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    N. Bassim, C.S. Kiminami, M.J. Kaufman, M.F. Oliveira, M.N.R.V. Perdigao, and W.J. Botta Filho, Mater. Sci. Eng. A 304–306, 332 (2001).

    Article  Google Scholar 

  7. 7.

    M. Yewondwossen, R.A. Dunlap, and D.J. Lloyd, J. Phys: Condens. Matter 4, 461 (1992).

    CAS  Google Scholar 

  8. 8.

    A. Inoue, Y. Kawamura, H.M. Kimura, and H. Mano, Mater. Sci. Forum 360–362, 129 (2001).

    Article  Google Scholar 

  9. 9.

    Á. Révész, L.K. Varga, S. Suriñach, and M.D. Baró (unpublished).

  10. 10.

    A. Inoue, K. Nakazato, Y. Kawamura, A.P. Tsai, and T. Masumoto, Materials. Trans. JIM 35, 102 (1994).

    Google Scholar 

  11. 11.

    X.Y. Jiang, Z.C. Zhong, and A.L. Greer, Mater. Sci. Eng. A 226–228, 789 (1997).

    Article  Google Scholar 

  12. 12.

    A.P. Tsai, T. Kamiyama, Y. Kawamura, A. Inoue, and T. Masumoto, Acta Mater. 45, 1477 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    P. Schumacher and A.L. Greer, Mater. Mater. Sci. Eng. A 226–228, 794 (1997).

    Article  Google Scholar 

  14. 14.

    A. Inoue, K. Ohtera, A.P. Tsai, H. Kimura, and T. Masumoto, Jpn. J. Appl. Phys. 27, L1579 (1988).

    CAS  Article  Google Scholar 

  15. 15.

    H.E. Kissinger, Anal. Chem. 29, 1702 (1957).

    CAS  Article  Google Scholar 

  16. 16.

    D.W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).

    Article  Google Scholar 

  17. 17.

    M. Gich, T. Gloriant, S. Suriñach, A.L. Greer, and M.D. Baró, J. Non-Cryst. Solids 289, 214 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    L.C. Chen and F. Spaepen, Nature 336, 366 (1988).

    CAS  Article  Google Scholar 

  19. 19.

    L.C. Chen and F. Spaepen, J. Appl. Phys. 69, 679 (1991).

    CAS  Article  Google Scholar 

  20. 20.

    M.D. Baró. S. Suriñach, J. Malagelada, M.T. Clavaguera-Mora, S. Gialanella, and R.W. Cahn, Acta Mater. Metall. 41, 1065 (1993).

    Article  Google Scholar 

  21. 21.

    S. Suriñach, M.D. Baró, M.T. Clavaguera Mora, and N. Clavaguera, J. Non-Cryst. Solids 58, 209 (1983).

    Article  Google Scholar 

  22. 22.

    M. Avrami, J. Chem. Phys. 9, 177 (1941).

    CAS  Article  Google Scholar 

  23. 23.

    J.W. Christian, The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon, Oxford, United Kingdom, 1975).

    Google Scholar 

  24. 24.

    Z.C. Zhong, X.Y. Jiang, and A.L. Greer, Philos. Mag. B 76, 505 (1997).

    CAS  Article  Google Scholar 

  25. 25.

    T. Gloriant, D.H. Ping, K. Hono, A.L. Greer, and M.D. Baró, Mater. Sci. Eng. A 304–306, 315 (2001).

    Article  Google Scholar 

  26. 26.

    H.V. Atkinson, Acta Metall. 36, 469 (1988).

    CAS  Article  Google Scholar 

  27. 27.

    Á. Révész, J. Lendvai, Á. Cziráki, H.H. Liebermann, and I. Bakonyi, J. Nanosci. Nanotech. 1, 191 (2001).

    Article  Google Scholar 

  28. 28.

    A.P. Sutton and K.W. Ballufi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, United Kingdom, 1995).

    Google Scholar 

  29. 29.

    A. Tschöpe and R. Birringer, Acta Metall. Mater. 41, 2791 (1993).

    Article  Google Scholar 

  30. 30.

    Á. Révész and J. Lendvai, Nanostruct. Mater. 10, 13 (1998).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Á. Révész.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Révész, Á., Varga, L.K., Suriñach, S. et al. Thermal stability, crystallization kinetics, and grain growth in an amorphous Al85Ce5Ni8Co2 alloy. Journal of Materials Research 17, 2140–2146 (2002). https://doi.org/10.1557/JMR.2002.0315

Download citation