Effect of oxygen on the reactions in the Si/Ta/Cu metallization system

Abstract

The effect of oxygen on the reaction mechanisms in the Si/Ta/Cu metallization system was studied experimentally and by utilizing the thermodynamically assessed Ta–O binary system. It was presented that an interfacial tantalum oxide was formed between Cu and Ta and that it established an additional barrier layer for Cu diffusion. The formation of additional barrier layer was supported by the following observations: (i) No detectable amount of Cu was found from the Ta layer with the combined transmission electron microscopy and energy dispersive spectroscopy at temperatures as high as 650 °C. (ii) Secondary ion mass spectrometry measurements indicated that significant amount of oxygen was incorporated into the films already after the sputtering stage. (iii) 181Ta16O molecular ion signals were detected from the Ta/Cu interface, indicating that the additional layer was in fact some form of tantalum oxide. The diffusion of Cu through the Ta layer could not proceed until the interfacial oxide had been dissolved by the Ta matrix. Since the oxygen solubility in Ta matrix is high in the temperature range of interest, the interfacial oxide dissolution was kinetically controlled. It is to be noted that the threshold temperature range of the dissolution reaction was found to coincide with that of the β–Ta to the bcc-Ta transition, which was anticipated to enhance the kinetics of the dissolution.

This is a preview of subscription content, access via your institution.

References

  1. 1

    T. Ichikawa, M. Takeyama, and A. Noya, Jpn. J. Appl. Phys. 35, 1844 (1996).

    Google Scholar 

  2. 2

    K. Holloway and P. Fryer, Appl. Phys. Lett. 57, 1736 (1990).

    CAS  Article  Google Scholar 

  3. 3

    K. Holloway, P. Fryer, C. Cabral, J. Harper, P. Bailey, and K. Kelleher, J. Appl. Phys. 71, 5433 (1992).

    CAS  Article  Google Scholar 

  4. 4

    J. Olowolafe, C. Mogab, and R. Gregory, Thin Solid Films 227, 37 (1993).

    CAS  Article  Google Scholar 

  5. 5

    B-S. Kang, S-M. Lee, J. Kwak, D-S. Yoon, and H-K. Baik, J. Electrochem. Soc. 144, 1807 (1997).

    CAS  Article  Google Scholar 

  6. 6

    M. Stavrev, D. Fischer, A. Preuss, C. Wentzel, and N. Mattern, Microelectron. Eng. 33, 269 (1997).

    CAS  Article  Google Scholar 

  7. 7

    D-S. Yoon, H-K. Baik, and S-M. Lee, J. Appl. Phys. 83, 1333 (1998).

    CAS  Article  Google Scholar 

  8. 8

    L. Clevenger, N. Bojarczuk, K. Holloway, J. Harper, C. Cabral, R. Schad, F. Cardone, and L. Stolt, J. Appl. Phys. 73, 300 (1993).

    CAS  Article  Google Scholar 

  9. 9

    T. Laurila, K. Zeng, J. Molarius, I. Suni, and J.K. Kivilahti, J. Appl. Phys. 88, 3377 (2000).

    CAS  Article  Google Scholar 

  10. 10

    J. Bernardini, P. Gas, E.D. Hondros, and M.P. Seah, Proc. R. Soc. London A379, 159 (1982).

    CAS  Article  Google Scholar 

  11. 11

    M. Paulasto and J.K. Kivilahti, J. Mater. Res. 13, 243 (1998).

    Google Scholar 

  12. 12

    L. Chen, N. Magtoto, B. Ekstrom, and J. Kelber, Thin Solid Films 376, 115 (2000).

    Article  Google Scholar 

  13. 13

    K-M. Yin, L. Chang, F-R. Chen, J-J. Kai, C-C. Chiang, P. Ding, B. Chin, H. Zhang, and F. Chen, Thin Solid Films 388, 15 (2001).

    CAS  Article  Google Scholar 

  14. 14

    K-M. Yin, L. Chang, F-R. Chen, J-J. Kai, C-C. Chiang, G. Chuang, P. Ding, B. Chin, H. Zhang, and F. Chen, Thin Solid Films 388, 27 (2001).

    CAS  Article  Google Scholar 

  15. 15

    O. Kubaschewski and B. Hopkins, Oxidation of Metals and Alloys (Butterworths, London, United Kingdom, 1967).

    CAS  Article  Google Scholar 

  16. 16

    P. Shewmon, Diffusion in Solids (TMS, Warrendale, PA, 1989), p. 31.

    Google Scholar 

  17. 17

    P. Williams and J.E. Baker, Nucl. Instrum. Methods 182/183, 183 (1981).

    Google Scholar 

  18. 18

    R.G. Wilson, F.A. Stevie, and C.W. Magee, Secondary Ion Mass Spectrometry (John Wiley & Sons, New York, 1989).

    Google Scholar 

  19. 19

    L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams (Academic Press, New York, 1970).

    Google Scholar 

  20. 20

    I. Ansara, Pure Appl. Chem. 62, 71 (1990).

    Google Scholar 

  21. 21

    L. Darken and R. Gurry, Physical Chemistry of Solids (McGraw-Hill, Tokyo, Japan, 1953).

    CAS  Article  Google Scholar 

  22. 22

    E. Fromm and E. Gebhardt, Gas and Carbon in Metals (Springer-Verlag, Berlin, Germany, 1976).

    Google Scholar 

  23. 23

    A.D. LeClaire, in Diffusion in Solid Metals and Alloys, edited by H. Mehrer, Landolt-Börnstein, Vol. 26 (Springer-Verlag, Berlin, Germany, 1990).

    Google Scholar 

  24. 24

    T.B. Massalski, Binary Alloy Phase Diagrams (ASM Interna-tional, Materials Park, OH, 1996).

    Google Scholar 

  25. 25

    W. Kingery, H. Bowen, and D. Uhlmann, Introduction to Ceram-ics (John Wiley & Sons, New York, 1976).

    Google Scholar 

  26. 26

    D.R. Gaskell, Introduction to Metallurgical Thermodynamics (McGraw-Hill, New York, 1973).

    Google Scholar 

  27. 27

    H-J. Lee, K-W. Kwon, C. Ryu, and R. Sinclair, Acta Mater. 47, 3965 (1999).

    Google Scholar 

  28. 28

    A. Cros and K.N. Tu, J. Appl. Phys. 60, 3323 (1986).

    CAS  Article  Google Scholar 

  29. 29

    P. Kofstad, J. Phys. Chem. Solids 28, 1842 (1967).

    CAS  Article  Google Scholar 

  30. 30

    J. Giber and H. Oechsner, Thin Solid Films 131, 279 (1985).

    CAS  Article  Google Scholar 

  31. 31

    J.C. Bilello and S.M. Yalisove, in Polycrystalline Metal and Mag-netic Thin Films, edited by L. Gignoc, O. Thomas, J. MacLaren, and B. Clemens (Mater. Res. Soc. Symp. Proc., 615, Warrendale, PA, 2000).

    CAS  Article  Google Scholar 

  32. 32

    K.N. Tu, in Thin film Interdiffusion and Reactions, edited by J.M. Poate, K.N. Tu, and J.W. Mayer (Wiley, New York, 1978), pp. 360–403.

    Google Scholar 

  33. 33

    E. Gebhardt and H.D. Sehezzi, Z. Metallkd. 50, 521 (1952).

    Google Scholar 

  34. 34

    H. Jehn and E. Olzi, Less-Common Met. 27, 297 (1972).

    Google Scholar 

  35. 35

    S. Stecura, Metall. Trans. 5, 1337 (1974).

    CAS  Article  Google Scholar 

  36. 36

    R. Lauf and C. Altstetter, Scr. Metall. 11, 938 (1977).

    CAS  Article  Google Scholar 

  37. 37

    G. Boreau and P. Gerdanian. J. Phys. Chem. Solids 42, 749 (1981).

    Article  Google Scholar 

  38. 38

    J.G. Bednorz and K.A. Muller, Z. Phys. B 64, 189 (1986).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomi Laurila.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Laurila, T., Zeng, K., Kivilahti, J.K. et al. Effect of oxygen on the reactions in the Si/Ta/Cu metallization system. Journal of Materials Research 16, 2939–2946 (2001). https://doi.org/10.1557/JMR.2001.0404

Download citation