Effects of static thermal aging and thermal cycling on the microstructure and shear strength of Sn95.5Ag3.8Cu0.7 solder joints

Abstract

The microstructure and shear strength changes of SnAgCu/Cu and SnAgCu/Ni–P/Cu surface mount solder joints during thermal aging at 150 °C and thermal cycling between ?40 and 150 °C were investigated. The reaction rate between SnAgCu and Cu is higher than that between SnAgCu and Ni–P. After long aging time, the SnAgCu/Cu interface becomes the weakest region in the SnAgCu/Cu solder joint, whereas the shear-force-induced cracks in the SnAgCu/Ni–P solder joint appear at the interface of Ni–P/Cu. During thermal cycling, cracks develop in both solder joints and the shear strength decreases. After extensive thermal cycling, the Ni–P layer separates from the Cu substrate and the shear strength of the SnAgCu/Ni–P solder joint decreases drastically.

This is a preview of subscription content, access via your institution.

References

  1. 1

    S.K. Kang and A.K. Sarkhel, J. Electron. Mater. 23, 701 (1994).

    CAS  Article  Google Scholar 

  2. 2

    J.S. Hwang and R.M. Vorgas, Soldering Surface Mount Technol. 5, 38 (1990).

    CAS  Article  Google Scholar 

  3. 3

    N.M. Poon, C.M. Lawrence Wu, Joseph K.L. Lai, and Y.C. Chan, IEEE Trans. Comp. Packag. Manuf. Technol. 23, 708 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Y. Kariya and M. Otsuka, J. Electron. Mater. 27, 1229 (1998).

    CAS  Google Scholar 

  5. 5

    M. McCormack and S. Jin, J. Electron. Mater. 23, 715 (1994).

    CAS  Article  Google Scholar 

  6. 6

    Y. Kariya and M. Otsuka, J. Electron. Mater. 27, 866 (1998).

    CAS  Article  Google Scholar 

  7. 7

    T.L. Ylijoki, H. Steen, and A. Forsten, IEEE Trans. Comp. Packag. Manuf. Technol. 20, 194 (1997).

    CAS  Article  Google Scholar 

  8. 8

    J.C. Foley, A. Gickler, F.H. Leprevost, and D. Brown, J. Electron. Mater. 29, 1258 (2000).

    Article  Google Scholar 

  9. 9

    R.E. Pratt, E.I. Stromseold, and D.J. Quesnel, IEEE Trans. Comp. Packag. Manuf. Technol. 19, 134 (1996).

    CAS  Article  Google Scholar 

  10. 10

    P.L. Tu, Y.C. Chan, and J.K.L. Lai, IEEE Trans. Comp. Packag. Manuf. Technol. 20, 87 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Y.C. Chan, P.L. Tu, A.C.K. So, and J.K.L. Kai, IEEE Trans. Comp. Packag. Manuf. Technol. 20, 463 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Y.Y. Wei and J.G. Duh, J. Mater. Sci. Mater. Electron. 9, 373 (1998).

    CAS  Article  Google Scholar 

  13. 13

    H.N. Keller, IEEE Trans. Comp. Hybrids Manuf. Technol. 9, 433 (1986).

    CAS  Article  Google Scholar 

  14. 14

    A.H. Graham, R.W. Lindsay, and H.J. Read, J. Electrochem. Soc. 112, 401 (1965).

    Article  Google Scholar 

  15. 15

    K.L. Lin and P.J. Lai, J. Electrochem. Soc. 136, 3803 (1989).

    CAS  Article  Google Scholar 

  16. 16

    J. Sigelko, S. Choi, K.N. Subramanian, and J.P. Lucas, J. Elec-tron. Mater. 29, 1307 (2000).

    CAS  Article  Google Scholar 

  17. 17

    T.M. Korhonen, P. Su, S.J. Hong, M.A. Korhonen, and C.Y. Li, J. Electron. Mater. 29, 1194 (2000).

    CAS  Article  Google Scholar 

  18. 18

    S. Choi, K.N. Subramanian, J.P. Lucas, and T.R. Bieler, J. Elec-tron. Mater. 29, 1249 (2000).

    CAS  Article  Google Scholar 

  19. 19

    P.M. Hansen, Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 52.

    CAS  Article  Google Scholar 

  20. 20

    W. Yang and R.W. Messler, J. Electron. Mater. 23, 765 (1994).

    Google Scholar 

  21. 21

    C.Y. Lee and K.L. Lin, Thin Solid Films 249, 201 (1994).

    CAS  Article  Google Scholar 

  22. 22

    W.J. Tomlinson and H.G. Rhodes, J. Mater. Sci. 22, 1769 (1987).

    CAS  Article  Google Scholar 

  23. 23

    C.D. Young and J.G. Duh, IEEE Trans. Comp. Packag. Manuf. Technol. A21, 433 (1998).

    CAS  Article  Google Scholar 

  24. 24

    S. Ahat, L.G. Du, S. Mei, and L. Luo, J. Electron. Mater. 29, (2000).

    Google Scholar 

  25. 25

    R.W. Bulluffi and L.L. Seigle, Acta Metall. 5, 449 (1957).

  26. 26

    Y. Yuan, J.H. Fendler, and I. Cabasso, Chem. Mater. 4, 312 (1992).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shawkret Ahat.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahat, S., Sheng, M. & Luo, L. Effects of static thermal aging and thermal cycling on the microstructure and shear strength of Sn95.5Ag3.8Cu0.7 solder joints. Journal of Materials Research 16, 2914–2921 (2001). https://doi.org/10.1557/JMR.2001.0400

Download citation