New technique for pressureless infiltration of Al alloys into Al2O3 preforms


Al alloys were infiltrated into alumina preforms without the aid of pressure in N2 as well as in air at and above 750 °C. It was possible to eliminate termination of infiltration that was seen in open conditions (where N2 was in continuous contact with the melt) by modifying the infiltration geometry. This configuration enables the infiltration to continue for longer periods of time, consequently producing greater thickness of composite. In air, Mg placed at the interface getters the in-coming oxygen until the alloy billet melts and seals off the front from the ingress of the furnace atmosphere thereby eliminating the need for prealloying Al with Mg and N2 atmosphere. In addition, experiments in argon revealed that the infiltration requires some critical amount of N2 in the atmosphere.

This is a preview of subscription content, access via your institution.


  1. 1

    M.K. Aghajanian, J.T. Burke, D.R. White, and A.S. Nagelberg, SAMPE Quarterly 20, 43 (1989).

    Google Scholar 

  2. 2

    M.K. Aghajanian, M.A. Rocazella, J.T. Burke, and S.D. Keck, J. Mater. Sci. 26, 447 (1991).

    CAS  Google Scholar 

  3. 3

    G.H. Schiroky, D.V. Miller, M.K. Aghajanian, and A.S. Fareed, Key Eng. Mater. 127–131, 141 (1997).

    CAS  Article  Google Scholar 

  4. 4

    B. Srinivasa Rao and V. Jayaram, Acta Mater. 49, 2373 (2001).

    Google Scholar 

  5. 5

    J.N. Reding and M.R. Bothwell, U.S. Patent No. 33, 64, 976.

    CAS  Article  Google Scholar 

  6. 6

    A. Schweighofer and S. Kudela, Kovove Mater. 3, 257 (1977).

  7. 7

    J.A. Champion, B.J. Keene, and J.M. Sillwood, J. Mater. Sci. 4, 39 (1969).

    Google Scholar 

  8. 8

    D.G. Clarke, J.A. Little, and T.W. Clyne, in International Confer-ence on Advanced Composite Materials, edited by T. Chandra and A.K. Dhingra (TMS, 1993), p. 993.

    CAS  Article  Google Scholar 

  9. 9

    V. Laurent, D. Chatain, C. Chatillon, and N. Eustathopoulos, Acta. Metall. 36, 1797 (1988).

    Google Scholar 

  10. 10

    J.J. Brennan and J.A. Pask, J. Am. Ceram. Soc. 15, 569 (1968).

    CAS  Article  Google Scholar 

  11. 11

    S.M. Wolf, A.P. Levitt, and J. Brown, Chem. Eng. Sci. 62, 74 (1996).

    Article  Google Scholar 

  12. 12

    D.A. Weirauch Jr., Ceramic Microstructures: ’86: Role of Inter-faces (Plenum Press, New York, 1987), Vol. 21, p. 329.

    Google Scholar 

  13. 13

    N. Eustathopoulos, J.C. Joud, P. Desre, and J.M. Hicter, J. Mater. Sci. 9, 1233 (1974).

    Google Scholar 

  14. 14

    V. Laurent, D. Chatain, and N. Eustathopoulos, J. Mater. Sci. 22, 244 (1987).

    CAS  Article  Google Scholar 

  15. 15

    U. Madeleno, H. Liu, T. Shinoda, Y. Mishima, and T. Suzuki, J. Mater. Sci. 25, 3273 (1990).

    CAS  Article  Google Scholar 

  16. 16

    A. Weirauch Jr., J. Mater. Res. 3, 729 (1988).

    CAS  Article  Google Scholar 

  17. 17

    C. Garcia-Cordovila, E. Louis, and A. Pamies, J. Mater. Sci. 21, 2787 (1986).

    CAS  Article  Google Scholar 

  18. 18

    C.D. Chaklader, A.M. Armstrong, and S.K. Misra, J. Am. Ceram. Soc. 51, 630 (1968).

    Article  Google Scholar 

  19. 19

    E.W. Washburn, Phys. Rev. 17, 273 (1921).

    CAS  Article  Google Scholar 

  20. 20

    C. Goicoechea, C. Garcia-Cordovilla, E. Louis, and A. Pamies, J. Mater. Sci. 27, 5247 (1992).

    Article  Google Scholar 

  21. 21

    E. Gebhardt, M. Becker, and S. Dorner, Aluminium 7/8, 315 (1955).

    CAS  Google Scholar 

  22. 22

    W.J. Tomlinson and A. Fullylove, J. Mater. Sci. 27, 5777 (1992).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to B. Srinivasa Rao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rao, B.S., Jayaram, V. New technique for pressureless infiltration of Al alloys into Al2O3 preforms. Journal of Materials Research 16, 2906–2913 (2001).

Download citation