Microprobe fluorescence spectroscopy evaluation of stress fields developed along a propagating crack in an Al2O3/CaO 6Al2O3ceramic composite

Abstract

The fracture behavior upon stable crack propagation in bending was investigated for a ceramic matrix composite comprising 15 vol% of calcium hexaluminate (CaAl12O19 or “CA6”) in an Al2.O3 matrix and compared to the crack bridging stresses as measured by microprobe fluorescence spectroscopy. In addition, piezospectroscopy coefficients of -4.57 and -3.79 cm-1 GPa-1 were determined for the peaks located at 14488 and 14528 cm-1, respectively, for monolithic CA6. It was concluded that the macroscopic R-curve behavior of the composite could be predicted from microscopic bridging stress data and indicated microprobe fluorescence spectroscopy to be a significant experimental tool for the investigation of fracture micromechanisms in ceramic materials.

This is a preview of subscription content, access via your institution.

References

  1. 1

    O. Raddatz, G.A. Schneider, W. Mackens, H. Voss, and N. Claussen, J. Eur. Ceram. Soc. 20, 2261 (2000).

    CAS  Article  Google Scholar 

  2. 2

    G. Pezzotti, O. Sbaizero, V. Sergo, N. Muraki, K. Maruyama, and T. Nishida, J. Am. Ceram. Soc. 81, 187 (1998).

    CAS  Article  Google Scholar 

  3. 3

    G. Pezzotti, O. Sbaizero, H. Suenobu, and T. Nishida, J. Am. Ceram. Soc. 82, 1257 (1999).

    CAS  Article  Google Scholar 

  4. 4

    O. Sbaizero and G. Pezzotti, J. Eur. Ceram. Soc. 20, 1145 (2000).

    CAS  Article  Google Scholar 

  5. 5

    G. Pezzotti, J. Raman Spectrosc. 30, 867 (1999).

    CAS  Article  Google Scholar 

  6. 6

    R.A. Cutler, R.J. Mayhew, K.M. Prettyman, and A.V. Virkar, J. Am. Ceram. Soc. 74, 179 (1991).

    CAS  Article  Google Scholar 

  7. 7

    S. Tani, K. Umebayashi, K. Kishi, and M. Nishijima, Am. Ceram. Soc. Bull. 65, 1311 (1986).

    CAS  Google Scholar 

  8. 8

    K. Tsukuma and T. Takahata, in Advanced Structural Ceramics, edited by P.F. Becker, M.V. Swain, and S. Soōmiya (Mater. Res. Soc. Symp. Proc. 78, Pittsburgh, PA, 1987), p. 123.

    Google Scholar 

  9. 9

    P.L. Chen and I.W. Chen, J. Am. Ceram. Soc. 75, 2610 (1992).

    CAS  Article  Google Scholar 

  10. 10

    L. An and H.M. Chan, J. Am. Ceram. Soc. 79, 3142 (1996).

    CAS  Article  Google Scholar 

  11. 11

    E. Criado, P. Pena, and A. Caballero, in Science of Ceramics 14, edited by D. Taylor (Institute of Ceramics, Shelton, United King-dom, 1988), p. 193.

    Google Scholar 

  12. 12

    T. Nagaoka, S. Kanzaki, and Y. Yamaoka, J. Mater. Sci. Lett.9, 219 (1990).

    CAS  Google Scholar 

  13. 13

    D. Brooksbank, J. Iron Steel Inst. 208, 495 (1970).

    CAS  Google Scholar 

  14. 14

    Q. Ma and D.R. Clarke, J. Am. Ceram. Soc. 76, 1433 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Q. Ma and D.R. Clarke, Acta Metall. Mater. 41, 1817 (1993).

    CAS  Article  Google Scholar 

  16. 16

    J. He and D.R. Clarke, J. Am. Ceram. Soc. 78, 1347 (1995).

    CAS  Article  Google Scholar 

  17. 17

    T. Nojima and O. Nakai, J. Soc. Mater. Sci. Jpn. 42, 412 (1993).

    Article  Google Scholar 

  18. 18

    T. Nishida, Y. Hanaki, T. Nojima, and G. Pezzotti, J. Am. Ceram. Soc. 78, 3113 (1995).

    CAS  Article  Google Scholar 

  19. 19

    T. Nishida, Y. Hanaki, and G. Pezzotti, J. Am. Ceram. Soc. 77, 606 (1995).

    Article  Google Scholar 

  20. 20

    S. Maschio, E. Lucchini, and V. Sergo, J. Am. Ceram. Soc. 82, 3145 (1999).

    CAS  Article  Google Scholar 

  21. 21

    H. Tomaszewski, M. Boniecki, and H. Weglarz, J. Eur. Ceram. Soc. 20, 2569 (2000).

    CAS  Article  Google Scholar 

  22. 22

    D. Kovar, S.J. Bennison, and M.J. Readey, Acta Mater. 48, 565 (2000).

    CAS  Article  Google Scholar 

  23. 23

    T. Fett, J. Am. Ceram. Soc. 78, 945 (1995).

    CAS  Article  Google Scholar 

  24. 24

    G.R. Irwin, Handbook of Physics (Springer-Verlag, Berlin, Germany, 1958), Vol. 6, p. 551.

    Google Scholar 

  25. 25

    P.F. Becher, J. Am. Ceram. Soc. 74, 255 (1991).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Pezzotti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sbaizero, O., Maschio, S., Pezzotti, G. et al. Microprobe fluorescence spectroscopy evaluation of stress fields developed along a propagating crack in an Al2O3/CaO 6Al2O3ceramic composite. Journal of Materials Research 16, 2798–2804 (2001). https://doi.org/10.1557/JMR.2001.0385

Download citation