Topological transformation of grains in three-dimensional normal grain growth

Abstract

The topological transformation of grains in three-dimensional normal grain growth was analyzed by Brakke’s Surface Evolver method that simulated the boundary motion by curvature. The statistics on elemental processes, which change the number of faces f of a grain, were determined from the simulation. The distribution function of the number of faces P( f ) in a steady structure could be predicted from the difference in the current of grains arriving at and leaving from state f. For the disappearance of one grain, face-creation switching occurred 3.7 times and face-elimination switching occurred 13.2 times on the average.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    C.S. Smith, Metal Interfaces (ASM, Cleveland, OH, 1952), p. 65.

    Google Scholar 

  2. 2.

    D. Weaire and N. Rivier, Contemp. Phys. 25, 59 (1984).

    Article  Google Scholar 

  3. 3.

    H.V. Atkinson, Acta Metall. 36, 469 (1988).

    CAS  Article  Google Scholar 

  4. 4.

    J.A. Glazier and D. Weaire, J. Phys.: Condens. Matter 4, 1867 (1992).

    Google Scholar 

  5. 5.

    V.E. Fradkov and D. Udler, Adv. Phys. 43, 739 (1994).

    CAS  Article  Google Scholar 

  6. 6.

    D. Weaire and S. McMurry, in Solid State Physics: Advances in Research and Applications, edited by H. Ehrenreich and F. Spaepen (Academic Press, San Diego, CA, 1997), Vol. 50, p. 1.

  7. 7.

    P. Feltham, Acta Metall. 5, 97 (1957).

    CAS  Article  Google Scholar 

  8. 8.

    M. Hillert, Acta Metall. 13, 227 (1965).

    CAS  Article  Google Scholar 

  9. 9.

    N.P. Louat, Acta Metall. 22, 721 (1974).

    CAS  Article  Google Scholar 

  10. 10.

    F.N. Rhines and K.R. Craig, Metall. Trans. 5, 413 (1974).

    CAS  Article  Google Scholar 

  11. 11.

    S.K. Kurtz and F.M.A. Carpay, J. Appl. Phys. 51, 5725 (1980).

    CAS  Article  Google Scholar 

  12. 12.

    M.F. Ashby and R.A. Verral, Acta Metall. 21, 149 (1973).

    CAS  Article  Google Scholar 

  13. 13.

    J.E. Morral and M.F. Ashby, Acta Metall. 22, 567 (1974).

    CAS  Article  Google Scholar 

  14. 14.

    E. Carnal and A. Mocellin, Acta Metall. 29, 135 (1981).

    Article  Google Scholar 

  15. 15.

    M.A. Fortes and A.C. Ferro, Acta Metall. 33, 1697 (1985).

    CAS  Article  Google Scholar 

  16. 16.

    H.J. Frost, C.V. Thomson, C.L. Howead, and J. Whang, Scr. Met. 22, 65 (1987).

    Article  Google Scholar 

  17. 17.

    K. Kawasaki, T. Nagai, and K. Nakashima, Philos. Mag. B60, 399 (1989).

    Article  Google Scholar 

  18. 18.

    M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Acta Metall. 32, 783 (1984).

    CAS  Article  Google Scholar 

  19. 19.

    M.P. Anderson, G.S. Gust, and D.J. Srolovitz, Philos. Mag. B59, 293 (1989).

    Article  Google Scholar 

  20. 20.

    K. Fuchizaki, T. Kusaba, and K. Kawasaki, Philos. Mag. B71, 333 (1995).

    Article  Google Scholar 

  21. 21.

    D. Weygand, Y. Bréchet, J. Lépinoux, and W. Gust, Philos. Mag. B79, 703 (1999).

    Article  Google Scholar 

  22. 22.

    K.A. Brakke, Exp. Math. 1, 141 (1992).

    Article  Google Scholar 

  23. 23.

    F. Wakai, N. Enomoto, and H. Ogawa, Acta Mater. 48, 1297 (2000).

    CAS  Article  Google Scholar 

  24. 24.

    F. Wakai, Y. Shinoda, S. Ishihara, and A. Domínguez-Rodríguez, Philos. Mag. 81, 517 (2001).

    CAS  Article  Google Scholar 

  25. 25.

    J.E. Burke and D. Turnbull, Prog. Met. Phys. 3, 220 (1952).

    CAS  Article  Google Scholar 

  26. 26.

    J. von Neumann, Metal Interfaces (ASM, Cleveland, OH, 1952), p. 108.

  27. 27.

    W.W. Mullins, Acta Metall. 37, 2979 (1989).

    Article  Google Scholar 

  28. 28.

    D. Weaire and J.A. Glazier, Philos. Mag. Lett. 68, 363 (1993).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Wakai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wakai, F., Shinoda, Y., Ishihara, S. et al. Topological transformation of grains in three-dimensional normal grain growth. Journal of Materials Research 16, 2136–2142 (2001). https://doi.org/10.1557/JMR.2001.0291

Download citation