Nanostructured carbon generated by chemical vapor deposition from acetylene on surfaces pretreated by a combination of physical and chemical methods

Abstract

Chemical vapor deposition of carbon nanotubes by catalytic decomposition of acetylene on V2O5 microtube crystals is presented. The catalyst was prepared by laser irradiation of vanadium sheets and treated with cobalt acetate solution. The carbon deposits generated on this novel type of catalyst were characterized by transmission electron microscopy measurements. Both carbon nanofibers and carbon nanotubes were found to be formed. This catalyst system, generated by the combined laser irradiation and chemical impregnation methods, is a new and promising way to study the differences in the mechanism of the generation of nanostructures.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Chambers, C. Park, R.T.K. Baker, and N.M. Rodrigez, J. Phys. Chem. B 102, 4253 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    Q. Wang and J.K. Johnson, J. Phys. Chem. B 103, 277 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    A. Chu, J. Cook, R.J.R. Heesom, J.L. Hutchison, M.L.H. Green, and J. Sloan, Chem. Mater. 8, 2751 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    B.K. Pradhan, T. Kyotani, and A. Tomita, Chem. Commun. (14), 1317 (1999).

  5. 5.

    J. Sloan, D.M. Wright, H-G. Woo, S. Bailey, G. Browa, A.P.E. York, K.S. Coleman, J.L. Hutchinson, and M.L.H. Green, Chem. Commun. (8), 699 (1999).

  6. 6.

    C.H. Kiang, J-S. Choi, T.T. Tran, and A.D. Bacher, J. Phys. Chem. B 103, 7449 (1999).

    CAS  Article  Google Scholar 

  7. 7.

    P.M. Ajayan and S. Iijima, Nature 361, 333 (1993).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Yoshida, Appl. Phys. Lett. 22, 64 (1994).

    Google Scholar 

  9. 9.

    S.C. Tsang, Y.K. Chen, P.J.F. Harris, and M.L.H. Green, Nature 372, 159 (1994).

    CAS  Article  Google Scholar 

  10. 10.

    Ph. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, and R.E. Walkup, Appl. Surf. Sci. 141, 201 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    J.K. Campbell, L. Sun, and R.M. Crooks, J. Am. Chem. Soc. 121, 3779 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    J. Hu, M. Ouyang, P. Yang, and C.M. Lieber, Nature 399, 48 (1999).

    CAS  Article  Google Scholar 

  13. 13.

    P.M. Ajayan, Chem. Rev. 99, 1787 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    S. Iijima, Nature 354, 56 (1991).

    CAS  Article  Google Scholar 

  15. 15.

    Z.W. Pan, S.S. Xie, B.H. Chang, L.F. Sun, W.Y. Zhou, and G. Wang, Chem. Phys. Lett. 299, 97 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    T. Kyotani, L-F. Tsai, and A. Timita, Chem. Mater. 7, 1427 (1995).

    CAS  Article  Google Scholar 

  17. 17.

    A.M. Cassel, N.R. Franklin, T.W. Tombler, E.M. Chan, J. Han, and H. Dai, J. Am. Chem. Soc. 121, 7975 (1999).

    Article  CAS  Google Scholar 

  18. 18.

    S. Huang, L. Dai, and A.W.H. Mau, J. Phys. Chem. B 103, 4223 (1999).

    CAS  Article  Google Scholar 

  19. 19.

    K. Hernadi, A. Fonseca, J.B. Nagy, A. Fudala, and A.A. Lukas, Zeolites 17, 416 (1996).

    CAS  Article  Google Scholar 

  20. 20.

    J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, and R.C. Haddon, Science 282, 95 (1998).

    CAS  Article  Google Scholar 

  21. 21.

    T. Abatemarco, J. Stikkel, J. Belfort, B.P. Frank, P.M. Ajayan, and G. Belfort, J. Phys. Chem. B 103, 3534 (1999).

    CAS  Article  Google Scholar 

  22. 22.

    E.T. Mickelson, I.W. Chiang, J.L. Zimmerman, J.P. Boul, J. Lozano, J. Liu, R.E. Smalley, R.H. Hauge, and J.L. Margrave, J. Phys. Chem. B 103, 4318 (1999).

    CAS  Article  Google Scholar 

  23. 23.

    G.U. Sumanasekera, J.L. Allen, S.L. Fang, A.L. Loper, A.M. Rao, and P.C. Eklund, J. Phys. Chem. B 103, 4292 (1999).

    CAS  Article  Google Scholar 

  24. 24.

    Y. Chen, J. Chen, H. Hu, M.A. Hamon, M.E. Itkis, and R.C. Haddon, Chem. Phys. Lett. 299, 532 (1999).

    CAS  Article  Google Scholar 

  25. 25.

    A. Rochefort, D.R. Salahub, and P. Avouris, J. Phys. Chem. B 103, 641 (1999).

    CAS  Article  Google Scholar 

  26. 26.

    D. Srivastava, D.W. Brenner, J.D. Schall, K.D. Ausman, M.F. Yu, and R.S. Ruoff, J. Phys. Chem. B 103, 4330 (1999).

    CAS  Article  Google Scholar 

  27. 27.

    F. Kokai, K. Takahashi, M. Yudasaka, R. Yamada, T. Ichihahsi, and S. Iijima, J. Phys. Chem. B 103, 4346 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    P. Chen, X. Wu, J. Lin, and K.L. Tan, J. Phys. Chem. B 103, 4559 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    B.K. Pradhan, T. Toba, T. Kyotani, and A. Tomita, Chem. Mater. 10, 2510 (1998).

    CAS  Article  Google Scholar 

  30. 30.

    V.A. Bobyrev, F.V. Bunkin, E. Deli, N.A. Kirichenko, B.S. Luk’yanchuk, L. Nanai, A.V. Simakin, I. Hevesi, and G.A. Shafeev, Kvantovaya Elektronika 9, 1943 (1982).

    CAS  Google Scholar 

  31. 31.

    J.G. Kiss, L. Nanai, I. Hevesi, and Z. Farkas, Microscopy 40, 150 (1983).

    Google Scholar 

  32. 32.

    F.V. Bunkin, N.A. Kirichenko, B.S. Luk’yanchuk, A.V. Simakhin, G.A. Shafeev, L. Nanai, and I. Hevesi, Acta Physica Hungarica 54, 111 (1983).

    CAS  Google Scholar 

  33. 33.

    I. Ursu, L. Nanu, M. Dinescu, A. Henung, I.N. Mihailescu, L.C. Nistor, E. Szil, J. Kovacs, I. Hevesi, and L. Nanai, Appl. Phys. A 35, 103 (1984).

    Article  Google Scholar 

  34. 34.

    L. Nanai, I. Hevesi, F.V. Bunkin, B.S. Luk’yanchuk, G.A. Shafeev, and D.T. Alimov, Infrared Phys. 25, 141 (1985).

    Article  Google Scholar 

  35. 35.

    L. Nanai, I. Hevesi, F.V. Bunkin, B.S. Luk’yanchuk, and E.A. Morozova, J. Appl. Phys. 61, 2633 (1987).

    CAS  Article  Google Scholar 

  36. 36.

    R. Vajtai, J. Janicsko-Csaty, L. Thien-Nga, L-M. Bonard, and L. Forro, AIP Conf. Proc. 486, 226 (1999).

    CAS  Google Scholar 

  37. 37.

    L. Nanai, R. Vajtai, I. Hevesi, D.A. Jelski, and T.F. George, Thin Solid Films 227, 13 (1993).

    CAS  Article  Google Scholar 

  38. 38.

    L. Nanai and T.F. George, J. Mater. Res. 12, 283 (1997).

    CAS  Article  Google Scholar 

  39. 39.

    P.M. Ajayan, O. Stephan, Ph. Redlich, and C. Colliex, Nature 375, 546 (1995).

    Article  Google Scholar 

  40. 40.

    C. Laurent, E. Flahaut, A. Peigney, and A. Rousset, New J. Chem. 22, 1229 (1998).

    CAS  Article  Google Scholar 

  41. 41.

    L.B. Kiss, R. Vajtai, and P.M. Ajayan, Phys. Status Solidi B 214/1, R3 (1999).

    CAS  Article  Google Scholar 

  42. 42.

    W.K. Maser, J.M. Lambert, P.M. Ajayan, O. Stephan, and P. Bernier, Synth. Met. 77, 243 (1996).

    CAS  Article  Google Scholar 

  43. 43.

    M. Takizawa, S. Bandow, T. Torii, and S. Iijima, Chem. Phys. Lett. 302, 146 (1999).

    CAS  Article  Google Scholar 

  44. 44.

    M. Yudasaka, T. Ichiashi, and S. Iijama, J. Phys. Chem. B 102, 10201 (1998).

    CAS  Article  Google Scholar 

  45. 45.

    M. Yudasaka, F. Kokai, K. Takahashi, R. Yamada, N. Sensui, T. Ichihashi, and S. Iijama, J. Phys. Chem. B 103, 3576 (1999).

    CAS  Article  Google Scholar 

  46. 46.

    K. Mukhopadhyay, A. Koshio, T. Sugai, N. Tanaka, H. Shinohara, Z. Kónya, and B. Nagy, J. Chem. Phys. Lett. 303, 117 (1999).

    CAS  Article  Google Scholar 

  47. 47.

    E. Flahaut, A. Govindaraj, A. Peigney, Ch. Laurent, A. Rousset, and C.N.R. Rao, Chem. Phys. Lett. 300, 236 (1999).

    CAS  Article  Google Scholar 

  48. 48.

    A.M. Cassell, J.A. Raymakers, J. Kong, and H. Dai, J. Phys. Chem. B 103, 6484 (1999).

    CAS  Article  Google Scholar 

  49. 49.

    P.E. Anderson and N.M. Rodrigez, J. Mater. Res. 14, 2912 (1999).

    CAS  Article  Google Scholar 

  50. 50.

    F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen, Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam, 1988), p. 147.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Siska.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siska, A., Kónya, Z., Hernádi, K. et al. Nanostructured carbon generated by chemical vapor deposition from acetylene on surfaces pretreated by a combination of physical and chemical methods. Journal of Materials Research 15, 2087–2090 (2000). https://doi.org/10.1557/JMR.2000.0300

Download citation