Morphology and microstructural properties of TiO2 nanopowders doped with trivalent Al and Ga cations

Abstract

The effects of doping on the morphological and microstructural properties of TiO2 nanopowders produced by laser pyrolysis were investigated mainly by x-ray diffraction (XRD) and electron microscopy. Samples of TiO2 powders were prepared by doping with different trivalent cations (Al and Ga). The powders were calcined at different temperatures in the range 400–1000 °C for 18 h, as well as at constant T = 700 °C up to 160 h. After each thermal treatment, XRD patterns were collected. The analysis of XRD patterns allowed us to estimate the microstrains and average crystallite size and to observe the evolution of the microstructural parameters with temperature. Both Al and Ga inhibited the crystallite growth of TiO2 anatase and the rutile phases, this effect being larger in the Al-doped powders.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. Suryanarayana, Bull. Mater. Sci. 17, 307 (1994).

    CAS  Article  Google Scholar 

  2. 2.

    R.W. Siegel, J. Phys. Chem. Solids 55, 1097 (1994).

    CAS  Article  Google Scholar 

  3. 3.

    J.A. Eastman, J. Appl. Phys. 75, 770 (1994).

    CAS  Article  Google Scholar 

  4. 4.

    C.D. Terwilliger, Nanostruct. Mater. 6, 651 (1994).

    Article  Google Scholar 

  5. 5.

    J.F. Banfield, B.L. Bischoff, and M.A. Anderson, Chem. Geol. 110, 211 (1993).

    CAS  Article  Google Scholar 

  6. 6.

    J.A. Eastman, J. Appl. Phys. 75, 770 (1994).

    CAS  Article  Google Scholar 

  7. 7.

    K.N.P. Kumar, Appl. Catal., A 119, 163 (1994).

    CAS  Article  Google Scholar 

  8. 8.

    A.A. Gribb and J.F. Banfield, Am. Mineral. 82, 717 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    X.S. Ye, J. Sha, Z.K. Jiao, Z.F. Peng, and L.D. Zhang, J. Mater. Sci. Technol. 13, 359 (1997).

    CAS  Google Scholar 

  10. 10.

    H.Z. Zhang and J.F. Banfield, J. Mater. Chem. 8, 2073 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    X.Z. Ding and X.H. Liu, J. Mater. Res. 13, 2556 (1998).

    CAS  Article  Google Scholar 

  12. 12.

    H.M. Cheng, J.M. Ma, Z.G. Zhao, and L.M. Qi, Chem. Mater. 7, 663 (1995).

    CAS  Article  Google Scholar 

  13. 13.

    V. Chhabra, V. Pillai, B.K. Mishra, A. Morrone, and D.O. Shah, Langmuir 11, 3307 (1995).

    CAS  Article  Google Scholar 

  14. 14.

    X. Bokhimi, A. Morales, O. Novaro, T. Lopez, O. Chimal, M. Asomoza, and R. Gomez, Chem. Mater. 9, 2616 (1997).

    CAS  Article  Google Scholar 

  15. 15.

    X.Z. Ding and X.H. Liu, J. Alloys Compd. 248, 143 (1997).

    CAS  Article  Google Scholar 

  16. 16.

    A.M. Tonejc, A. Turkovic, M. Gotic, S. Music, M. Vukovic, R. Trojko, and A. Tonejc, Mater. Lett. 31, 127 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    C. Suresh, V. Biju, P. Mukundan, and K.G.K. Warrier, Polyhedron 17, 3131 (1998).

    CAS  Article  Google Scholar 

  18. 18.

    X.Z. Ding, X.H. Liu, and Y.Z. He, J. Mater. Sci. Lett. 15, 1789 (1996).

    CAS  Article  Google Scholar 

  19. 19.

    K.J.D. MacKenezie, Trans. J. Br. Ceram. Soc. 74, 29 (1975).

    Google Scholar 

  20. 20.

    M. Kamal Akhtar, S.E. Pratsinis, and S.V.R. Mastrangelo, J. Mater. Res. 9, 1241 (1994).

    Article  Google Scholar 

  21. 21.

    C.J. Chen and J.M. Wu, Mater. Sci. Eng. B5, 377 (1990).

    CAS  Article  Google Scholar 

  22. 22.

    S. Vargas, R. Arroyo, E. Haro, and R. Rodriguez, J. Mater. Res. 14, 3932 (1999).

    CAS  Article  Google Scholar 

  23. 23.

    N. Uckawa, Y. Kurashima, K. Kakegawa, and Y. Sasaki, J. Mater. Res. 15, 967 (2000).

    Article  Google Scholar 

  24. 24.

    M.K. Akhtar, S.E. Pratsinis, and S.V.R. Mastrangelo, J. Am. Ceram. Soc. 75, 3408 (1992).

    CAS  Article  Google Scholar 

  25. 25.

    M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    CAS  Article  Google Scholar 

  26. 26.

    L.E. Depero J. Solid State Chem. 104, 470 (1993).

    CAS  Article  Google Scholar 

  27. 27.

    R.D. Shannon, J. Appl. Phys. 35, 3414 (1964).

    CAS  Article  Google Scholar 

  28. 28.

    F. Curcio, M. Musci, N. Notaro, and G. De Michele, Appl. Surf. Sci. 46, 225 (1990).

    CAS  Article  Google Scholar 

  29. 29.

    M. Musci, M. Notaro, F. Curcio, C. Casale, and G. De Michele, J. Mater. Res. 7, 2846 (1992).

    CAS  Article  Google Scholar 

  30. 30.

    L.E. Depero, P. Bonzi, M. Musci, and C. Casale, J. Solid State Chem. 111, 247 (1994).

    CAS  Article  Google Scholar 

  31. 31.

    L.E. Depero, L. Sangaletti, B. Allieri, E. Bontempi, R. Salari, M. Zocchi, C. Casale, and M. Notaro, J. Mater. Res. 13, 1644 (1998).

    CAS  Article  Google Scholar 

  32. 32.

    L.E. Depero, L. Sangaletti, B. Allieri, F. Pioselli, C. Casale, and M. Notaro, Mater. Sci. Forum 278–281, 654 (1998).

    CAS  Article  Google Scholar 

  33. 33.

    The calculations were performed using the two programs, General Peak Separation Routine—MARQFIT (1990) and Line Broadening Analysis by WAXS (1992) by L. Luterotti and P. Scardi.

  34. 34.

    R.K. Nandi, H.K. Kuo, W. Shosberg, G. Wissler, J.B. Cohen, and B. Crist, Jr., J. Appl. Crystallogr. 17, 22 (1984).

    CAS  Article  Google Scholar 

  35. 35.

    ICSD Inorganic Crystal Structure Database, Release 95/1, FIZ-Fachinformationszentrum Karlsruhe and GMELIN-Institut.

  36. 36.

    Xing-Zhao and Xiang-Huai Liu, J. Mater. Res. 13, 2556 (1998).

    Article  Google Scholar 

  37. 37.

    JCPDF Database, Card No. 431012, International Centre for Diffraction Data, β–Ga2O3 phase, monoclinic (1998).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. E. Depero.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Depero, L.E., Marino, A., Allieri, B. et al. Morphology and microstructural properties of TiO2 nanopowders doped with trivalent Al and Ga cations. Journal of Materials Research 15, 2080–2086 (2000). https://doi.org/10.1557/JMR.2000.0299

Download citation