Skip to main content
Log in

Formation of nanophases in a Cu–Zn alloy under high current density electropulsing

  • Rapid Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructure of samples before and after a high current density electropulsing treatment was characterized by using high-resolution transmission electron microscopy. It has been found that in the coarse-grained Cu–Zn alloy subjected to the electropulsing treatment, two nanophases were formed, α–Cu(Zn) and β′–(CuZn), the average grain size of which is about 11 nm. A possible mechanism for the formation of nanophases was proposed. The experimental results indicated that electropulsing, as an instantaneous high-energy input, plays an important role in the nonequilibrium microstructural changes in materials and serves as a potential processing approach to synthesize nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  2. R. Birringer, Mater. Sci. Eng. A 117, 33 (1989).

    Article  Google Scholar 

  3. K. Lu, Mater. Sci. Eng. R 16, 161 (1996).

    Article  Google Scholar 

  4. C. Suryanarayana, Int. Mater. Rev. 40, 41 (1995).

    Article  CAS  Google Scholar 

  5. U. Erb, A.M. El-Sherik, G. Palumbo, and K.T. Aust, Nanostruct. Mater. 2, 383 (1993).

    Article  CAS  Google Scholar 

  6. R.Z. Valiev, A.V. Korznikor, and R.R. Mulyukov, Mater. Sci. Eng. A 168, 141 (1993).

    Article  Google Scholar 

  7. C.C. Koch, Nanostruct. Mater. 2, 109 (1993).

    Article  CAS  Google Scholar 

  8. H.J. Fecht, in NATO ASI Series E 260, Nanophase Materials: Synthesis-Properties-Applications, edited by G.C. Hadjipanayis and R.W. Siegel (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994), p. 125.

    Google Scholar 

  9. H. Bakker, G.F. Zhou, and H. Yang, Prog. Mater. Sci. 39, 159 (1995).

    Article  CAS  Google Scholar 

  10. O.A. Troitskii and V.I. Lichtman, Kokl. Akad. Nauk. S.S.S.R. 148, 332 (1963).

    CAS  Google Scholar 

  11. A.F. Sprecher, S.L. Mannan, and H. Conrad, Acta Metall. 34, 1145 (1986).

    Article  CAS  Google Scholar 

  12. J. Proost, I. Samajdar, B. Verlinden, Van. P. Houtte, K. Maex, and L. Delaey, Scr. Mater. 39, (1998).

  13. H. Conrad, Z. Guo, and A.F. Sprecher, Scr. Metall. 23, 821 (1989).

    Article  CAS  Google Scholar 

  14. R.S. Mishra, S.H. Risbud, and A.K. Mukherjee, J. Mater. Res. 13, 86 (1998).

    Article  CAS  Google Scholar 

  15. G.Q. Teng, Y.S. Chao, Z.H. Lai, and L. Dong, J. Mater. Sci. Lett. 14, 144 (1995).

    Article  CAS  Google Scholar 

  16. H. Conrad and A.F. Sprecher, Dislocations in Solids (Elsevier Publisher B.V., Amsterdam, The Netherlands, 1989), p. 512.

    Google Scholar 

  17. Handbook of International General Metal Materials, new edition, edited by C.R. Wang and C.X. Hu (Beijing University of Technology Publisher, Beijing, China, 1995), p. 103.

  18. K. Pekala and M. Pekala, Nanostruct. Mater. 6, 819 (1995).

    Article  Google Scholar 

  19. Binary Alloy Phase Diagrams, 2nd ed., edited by T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak (ASM International, Materials Park, OH, 1990), p. 1508.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Sui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Sui, M.L., Hu, K.Y. et al. Formation of nanophases in a Cu–Zn alloy under high current density electropulsing. Journal of Materials Research 15, 2065–2068 (2000). https://doi.org/10.1557/JMR.2000.0295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0295

Navigation