Solvent-induced stresses in glassy polymer: Elastic model

Abstract

The solvent-induced stresses in glassy polymers were investigated. The mass transport accounts for case I, case II, and anomalous transport. Case I transport is attributed to the concentration gradient, whereas case II transport is attributed to stress relaxation. Anomalous transport is the mixture of case I and case II. Both one-side and two-side mass transports with the boundary condition of constant surface concentration are considered. The stresses and longitudinal displacement arising from the mass transport are formulated based on the linear elasticity theory. The maximum stress is always located at the surface at the initial time. The stresses are a function of the partial molal volume, Young’s modulus, and Poisson’s ratio. From the longitudinal displacement data, the partial molal volume was determined.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. Alfrey, E.F. Gurnee, and W.G. Lloyd, J. Polym. Sci. C, 12, 249 (1966).

    Article  Google Scholar 

  2. 2.

    S.P. Chen and J.A.D. Edin, Polym. Eng. Sci. 20, 40 (1980).

    Article  Google Scholar 

  3. 3.

    J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford University Press, Oxford, United Kingdom, 1975).

  4. 4.

    N.L. Thomas and A.H. Windle, Polymer 19, 255 (1978).

    CAS  Article  Google Scholar 

  5. 5.

    N.L. Thomas and A.H. Windle, Polymer 23, 529 (1982).

    CAS  Article  Google Scholar 

  6. 6.

    H.B. Hopfenberg, L. Nicolais, and E. Driole, Polymer 17, 195 (1976).

    CAS  Article  Google Scholar 

  7. 7.

    A. Friedman and G. Rossi, Macromolecules 30, 153 (1997).

    CAS  Article  Google Scholar 

  8. 8.

    S. Govindjee and J.C. Simo, J. Mech. Phys. Solids 41, 863 (1993).

    Article  Google Scholar 

  9. 9.

    C.Y. Hui and K.C. Wu, J. Appl. Phys. 61, 5129 (1987).

    CAS  Article  Google Scholar 

  10. 10.

    C.Y. Hui and K.C. Wu, J. Appl. Phys. 61, 5137 (1987).

    CAS  Article  Google Scholar 

  11. 11.

    A. Peterlin, J. Res. Natl. Bur. Stand. 81A, 243 (1977).

    CAS  Article  Google Scholar 

  12. 12.

    T.T. Wang, T.K. Kwei, and H.L. Frisch, J. Polym. Sci. A27, 2019 (1969).

    Google Scholar 

  13. 13.

    T.K. Kwei, T.T. Wang, and H.M. Zupko, Macromolecules 5, 645 (1972).

    CAS  Article  Google Scholar 

  14. 14.

    T.K. Kwei and H.M. Zupko, J. Polym. Sci. A2(7), 876 (1969).

  15. 15.

    T.T. Wang and T.K. Kwei, Macromolecules 6, 919 (1973).

    CAS  Article  Google Scholar 

  16. 16.

    H.L. Frisch, T.T. Wang, and T.K. Kwei, J. Polym. Sci. A2(7), 8 (1969).

  17. 17.

    J.P. Harmon, S. Lee, and J.C.M. Li, J. Polym. Sci. A25, 3215 (1987).

    Article  Google Scholar 

  18. 18.

    J.P. Harmon, S. Lee, and J.C.M. Li, Polymer 29, 1221 (1998).

    Article  Google Scholar 

  19. 19.

    C.B. Lin, S. Lee, and K.S. Liu, Polym. Eng. Sci. 30, 1399 (1990).

    CAS  Article  Google Scholar 

  20. 20.

    S. Lee, J. Mater. Res. 11, 2403 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    H. Ouyang and S. Lee, J. Mater. Res. 12, 2794 (1997).

    CAS  Article  Google Scholar 

  22. 22.

    T. Wu, S. Lee, and W-C. Chen, Macromolecules 28, 5751 (1995).

    CAS  Article  Google Scholar 

  23. 23.

    H. Ouyang, C-C. Chen, S. Lee, and H. Yang, J. Polym. Sci. B36, 163 (1998).

    Article  Google Scholar 

  24. 24.

    S. Prussin, J. Appl. Phys. 32, 1876 (1961).

    CAS  Article  Google Scholar 

  25. 25.

    J.C.M. Li, Metall. Mater. Trans. 9A, 1353 (1979).

    Google Scholar 

  26. 26.

    D.R. Huang and S. Lee, in Micromechanics of Advanced Materials, edited by S.N.G. Chu, P.K. Liaw, R.J. Arsenault, K. Sadananda, K.S. Chan, W.W. Gerberich, C.C. Chau, and T.M. Kung (Minerals, Metals, and Materials Society, Warrendale, PA, 1995), p. 273.

  27. 27.

    J.L. Chu and S. Lee, J. Appl. Phys. 73, 3211 (1993).

    Article  Google Scholar 

  28. 28.

    J.L. Chu and S. Lee, J. Appl. Phys. 73, 2239 (1993).

    CAS  Article  Google Scholar 

  29. 29.

    F.C. Larche and J.W. Cahn, Acta Metall. 30, 1835 (1982).

    Article  Google Scholar 

  30. 30.

    F.C. Larche and J.W. Cahn, J. Res. Natl. Bur. Stand. 89, 467 (1984).

    Article  Google Scholar 

  31. 31.

    M. Kim and P. Neogi, J. Appl. Polym. Sci. 29, 731 (1984).

    CAS  Article  Google Scholar 

  32. 32.

    S. Lee (unpublished).

  33. 33.

    S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970), Chap. 13.

  34. 34.

    G. Astarita and G.C. Sarti, Polym. Eng. Sci. 18, 388 (1978).

    CAS  Article  Google Scholar 

  35. 35.

    G. Astarita and S. Joshi, J. Membr. Sci. 4, 165 (1978).

    CAS  Article  Google Scholar 

  36. 36.

    G.C. Sarti, C. Gostoli, and G. Riccioli, J. Appl. Polym. Sci. 32, 3627 (1986).

    CAS  Article  Google Scholar 

  37. 37.

    C. Gostoli and G.C. Sarti, Polym. Eng. Sci. 22, 1018 (1982).

    CAS  Article  Google Scholar 

  38. 38.

    C. Gostoli and G.C. Sarti, Chem. Eng. Commun. 21, 67 (1983).

    CAS  Article  Google Scholar 

  39. 39.

    L. Nicolais, E. Drioli, H.B. Hopfenberg, and D. Tidone, Polymer 18, 1137 (1977).

    CAS  Article  Google Scholar 

  40. 40.

    G.C. Sarti, Polymer 20, 827 (1979).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei-Lung Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, WL., Chen, J.R. & Lee, S. Solvent-induced stresses in glassy polymer: Elastic model. Journal of Materials Research 14, 4111–4118 (1999). https://doi.org/10.1557/JMR.1999.0555

Download citation