Reduction of copper oxide with graphite by mechanical alloying


The reduction of CuO with different amounts of C (CuO:C = 2:1, 2:1.5, and 2:2 molar ratios) driven by mechanical alloying was examined by x-ray diffraction and transmission electron microscopy. It was found that reduction behaviors are closely related to the carbon content. The reduction of CuO for the mixture with 1 mol of carbon follows a two-step process; i.e., CuO → Cu → Cu2O. However, the CuO can be completely converted to Cu for the mixtures with higher carbon content. A tentative model in terms of solid-state reactions at the interfaces is proposed to explain the effect of carbon content. Additionally, the thermal responses of the premilled mixtures were investigated by thermogravity and differential thermal analysis followed by x-ray identification. Contrary to mechanical alloying, reduction of CuO during thermal treatment follows a transition sequence of CuO → Cu2O → Cu. The preferential formation of Cu2O at the early annealing stage is probably due to the involvement of gaseous reduction.

This is a preview of subscription content, access via your institution.


  1. 1.

    J.S. Benjamin, Metal. Trans. 1, 2943 (1970).

    CAS  Google Scholar 

  2. 2.

    P.S. Gilman and J.S. Benjamin, Annu. Rev. Mater. 13, 279 (1983).

    CAS  Article  Google Scholar 

  3. 3.

    C.C. Koch, O.B. Cavin, C.G. Mckamcy, and J.O. Scarbrough, Appl. Phys. Lett. 43, 1017 (1983).

    CAS  Article  Google Scholar 

  4. 4.

    C. Politis and W.L. Johnson, J. Appl. Phys. 60, 1147 (1986).

    CAS  Article  Google Scholar 

  5. 5.

    D.G. Morris and M.A. Morris, Master. Sci. Eng. 134, 1481 (1991).

    Google Scholar 

  6. 6.

    J. Xu, U. Herr, T. Klasse, and R.S. Averback, J. Appl. Phys. 79, 3935 (1996).

    CAS  Article  Google Scholar 

  7. 7.

    J. Eckert, L. Schulz, and K. Urban, Z. Metallk. 81, 862 (1990).

    CAS  Google Scholar 

  8. 8.

    H.J. Fecht, G. Han, Z. Fu, and W.L. Johnson, J. Appl. Phys. 67, 1744 (1990).

    CAS  Article  Google Scholar 

  9. 9.

    G.B. Schaffer and P.G. McCormick, Appl. Phys. Lett. 55, 45 (1989).

    CAS  Article  Google Scholar 

  10. 10.

    G.B. Schaffer and P.G. McCormick, Metall. Trans. A. 21, 2789 (1990).

    Article  Google Scholar 

  11. 11.

    H. Yang and P.G. McCormick, J. Solid State Chem. 107, 258 (1993).

    CAS  Article  Google Scholar 

  12. 12.

    G.B. Schaffer and P.G. McCormick, Metall. Trans. A. 23, 1285 (1992).

    Article  Google Scholar 

  13. 13.

    H. Yang and P.G. McCormick, J. Solid State Chem. 110, 136 (1994).

    CAS  Article  Google Scholar 

  14. 14.

    G.B. Schaffer and P.G. McCormick, J. Mater. Sci. Lett. 9, 1014 (1990).

    CAS  Article  Google Scholar 

  15. 15.

    P.G. McCormick, Metall. Trans. JIM 36, 161 (1995).

    CAS  Google Scholar 

  16. 16.

    H. Yang, G. Nguyen, and P.G. McCormick, Scr. Metall. Mater. 32, 681 (1995).

    CAS  Article  Google Scholar 

  17. 17.

    M. Magini, N. Burgio, S. Martelli, F. Padella, and E. Paridiso, J. Mater. Sci. 26, 3969 (1991).

    CAS  Article  Google Scholar 

  18. 18.

    L. Liu, F. Padella, W. Guo, and M. Magini, Acta Metall. Mater. 43, 3755 (1995).

    CAS  Article  Google Scholar 

  19. 19.

    L. Liu and Y.D. Dong, Nanostruct. Mater. 2, 463 (1993).

    CAS  Article  Google Scholar 

  20. 20.

    Smithells Metals Reference Book, edited by A. Brandes (Robert Hartnoll Ltd., England, 1983).

  21. 21.

    Handbook of Chemistry and Physics, edited by Robert C. Weast (CRC Press, Boca Raton, FL, 1988).

  22. 22.

    Y. Chen, T. Hwang, M. Marsh, and J.S. Williams, Metall. Mater. Trans. A. 28, 115 (1997).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to L. Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, L., Zhang, T.J., Cui, K. et al. Reduction of copper oxide with graphite by mechanical alloying. Journal of Materials Research 14, 4062–4069 (1999).

Download citation