Mechanical, tribological, and stress analyses of ion-beam-deposited boron-rich boron nitride films with increasing N content

Abstract

Boron (B) films and B-rich BNx films with different N contents (4.1–40.3 at.%.) were deposited by dual ion-beam deposition. The films consist of a B-rich phase constructed of icosahedral atomic clusters and a graphitelike boron nitride phase. The films with N content ≤20.3 at.% is dominated by the B-rich phase. Their hardness rises with increasing N content to reach a maximum value of 18.8 GPa. The hardness-to-elastic modulus ratio (H/E) and the critical load of the films also increase, showing stronger wear resistance of the films. These results can be explained if some N–B–N chains are formed at the interstitial sites in the network of the B-rich phase, which cross-link different icosahedral atomic clusters in the B-rich phase and strengthen the rigidity of the structure. For the films with higher N contents, the volume fraction of the graphitelike boron nitride phase becomes higher, and the hardness drops as a consequence. However, the change in the H/E ratio is rather mild. This implies that the wear resistance of the films is not altered and explains why the critical load of the films remains almost unchanged. In addition, the friction coefficient μ of all the films depends on the normal load L in the form of μ = aLy, where a and y are numerical parameters and are insensitive to the change in the N content. Furthermore, compressive stress was found to increase from about 0.12 to 1.7 GPa when the N content increased from 4.1 to 40.3 at.%.

References

  1. 1.

    O.A. Golikova, Phys. Status Solidi A 101, 277 (1987).

    CAS  Article  Google Scholar 

  2. 2.

    R. Riedel, Adv. Mater. 6, 549 (1994).

    CAS  Article  Google Scholar 

  3. 3.

    T. Lundström and Y.G. Andreev, Mater. Sci. Eng. A 209, 16 (1996).

    Article  Google Scholar 

  4. 4.

    T.L. Aselage and R.G. Tissot, J. Am. Ceram. Soc. 75, 2207 (1992).

    CAS  Article  Google Scholar 

  5. 5.

    H. Hubert, L.A.J. Garvie, B. Devouard, P.R. Buseck, W.T. Petuskey, and P.F. McMillan, Chem. Mater. 10, 1530 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    H. Saitoh, K. Yoshida, and W.A. Yarbrough, J. Mater. Res. 8, 8 (1993).

    CAS  Article  Google Scholar 

  7. 7.

    X-A. Zhao, C.W. Ong, K.F. Chan, Y.M. Ng, Y.C. Tsang, C.L. Choy, and P.W. Chan, J. Vac. Sci. Technol. A. 15, 2297 (1997).

    CAS  Article  Google Scholar 

  8. 8.

    D.A. Shirley, Phys. Rev. B 5, 4709 (1972).

    Article  Google Scholar 

  9. 9.

    A. Witvrouw and F. Spaepen, in Thin Films: Stresses and Mechanical Properties II, edited by M.F. Doerner, W.C. Oliver, G.M. Pharr, and F.R. Brotzen (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990), p. 147.

  10. 10.

    G.G. Stoney, Proc. R. Soc. London, Ser. A 8, 172 (1909).

    Google Scholar 

  11. 11.

    W.A. Brantley, J. Appl. Phys. 44, 534 (1973).

    CAS  Article  Google Scholar 

  12. 12.

    C.W. Ong, K.P. Chik, and H.K. Wong, J. Appl. Phys. 74, 6094 (1993).

    CAS  Article  Google Scholar 

  13. 13.

    T.A. Friedmann, K.F. McCarty, E.J. Klaus, J.C. Barbour, W.M. Clift, H.A. Johnsen, D.L. Medlin, and D.K. Ottesen, Thin Solid Films 237, 48 (1994).

    CAS  Article  Google Scholar 

  14. 14.

    O.A. Golikova, M. Zhubanov, and D.N. Mirlin, Sov. Phys. Solid State 11, 1341 (1969).

    Google Scholar 

  15. 15.

    C.W. Ong, K.P. Chik, and H.K. Wong, J. Non-Cryst. Solids 114, 783 (1989).

    CAS  Article  Google Scholar 

  16. 16.

    W. Dworschak, K. Jung, and H. Ehrhardt, Thin Solid Films 254, 65 (1995).

    CAS  Article  Google Scholar 

  17. 17.

    P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, W.G. Wolfer, T.A. Friedmann, E.J. Klaus, G.F. Cardinale, and D.G. Howitt, J. Mater. Res. 9, 2925 (1994).

    CAS  Article  Google Scholar 

  18. 18.

    J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, MN, 1992), p. 215.

  19. 19.

    B. Rother, C. Weissmantel, and G. Leonhardt, Phys. Status Solidi A 100, 553 (1987).

    CAS  Article  Google Scholar 

  20. 20.

    M. Okamoto, Y. Utsumi, and Y. Osaka, Jpn. J. Appl. Phys. 29, L1004 (1990).

  21. 21.

    M.O. Watanabe, S. Itoh, and K. Mizushima, Appl. Phys. Lett. 68, 2962 (1996).

    CAS  Article  Google Scholar 

  22. 22.

    C. Doughty, S.M. Gorbatkin, T.Y. Tsui, G.M. Pharr, and D.L. Medlin, J. Vac. Sci. Technol., A 15, 2623 (1997).

    CAS  Google Scholar 

  23. 23.

    T.Y. Tsui, G.M. Pharr, W.C. Oliver, Y.W. Chung, E.C. Cutiong-co, C.S. Bhatia, R.L. White, R.L. Rhoades, and S.M. Gorbatkin, in Thin Films: Stresses and Mechanical Properties V, edited by S.P. Baker, C.A. Ross, P.H. Townsend, C.A. Volkert, and P. Børgesen (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 767.

  24. 24.

    K. Miyoshi, Surf. Coat. Technol. 36, 487 (1988).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. F. Chan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chan, K.F., Ong, C.W., Choy, C.L. et al. Mechanical, tribological, and stress analyses of ion-beam-deposited boron-rich boron nitride films with increasing N content. Journal of Materials Research 14, 3962–3972 (1999). https://doi.org/10.1557/JMR.1999.0536

Download citation