Effects of porosity on the thermal properties of a 380-aluminum alloy

Abstract

Effective values of the thermal diffusivity, specific heat, and thermal conductivity of a porous 380-aluminum alloy prepared by melting in a gas-fired furnace, were determined as a function of the volume fraction of porosity. For that, photoacoustic, differential calorimetric, density, and image analyzer measurements were done. Thermal conductivity and specific heat capacity decrease with the increase of porosity, whereas the thermal diffusivity shows less dependence. Among the effective models for analysis of the thermal conductivity of a two-phase system, the Maxwell model best fits the experimental data, implying a homogenous distribution of the pores in the aluminum-alloy matrix.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R.W. Ruddle, J. Inst. Metals, 77, 37 (1950).

    CAS  Google Scholar 

  2. 2.

    D. Chandley, C.M. Adams, Jr., and H.F. Taylor, AFS Trans. 64, 607 (1955).

    Google Scholar 

  3. 3.

    M.C. Flemings, S.Z. Uram, and H.F. Taylor, AFS Trans. 68, 670 (1960).

    Google Scholar 

  4. 4.

    E.M. Passmore, M.C. Flemings, and H.F. Taylor, AFS Trans. 66, 96 (1958).

    CAS  Google Scholar 

  5. 5.

    S.Z. Uram, M.C. Fleming, and H.F. Taylor, AFS Trans. 68, 347 (1960).

    Google Scholar 

  6. 6.

    W.J. Jackson, Brit. Foundryman 50, 211 (1957).

    Google Scholar 

  7. 7.

    H.R. Larson, H.W. Lloyd, and F.B. Herlihg, AFS Trans. 67, 676 (1959).

    Google Scholar 

  8. 8.

    B. Chamberlain and J. Sulzer, Mod. Castings 46, 600 (1964).

    CAS  Google Scholar 

  9. 9.

    P.K. Trojan, S. Suga, C. Kelto, and R.A. Flinn, AFS Trans. 81, 553 (1973).

    Google Scholar 

  10. 10.

    T.R. Ostrom and P.K. Trojan, AFS Trans. 82, 505 (1974).

    CAS  Google Scholar 

  11. 11.

    M.J. Young, AFS Trans. 89, 465 (1981).

    CAS  Google Scholar 

  12. 12.

    A. Herrera and V. Kondic, in Proceedings of the Conference on Solidification and Cast Metals, Sheffield, England (1977), pp. 460–465.

  13. 13.

    M.K. Surappa, E. Blank, and J.C. Jaquet, in Proceedings of the Conference Aluminium Technology ‘86, edited by T. Sheppard (Inst. of Metals, England, 1986), pp. 498–504.

  14. 14.

    P.K. Trojan and R.A. Flinn, Gases in Cast Metals, Proceedings of the Conference on Cast Metals (The Institute of the American Foundrymen’s Society, 1970), p.

  15. 15.

    L. Leduc, Ph.D. Thesis, University of Sheffield, Sheffield, England (1980).

  16. 16.

    D.J. Fish, Ph.D. Thesis, University of Sheffield, Sheffield, England (1973).

  17. 17.

    Interim Report of Subcommittee T.S.45, The British Foundryman Society, February, 1958, pp. 91–100.

  18. 18.

    E.L. Rooy, Modern Casting 82, 34 (1992).

    CAS  Google Scholar 

  19. 19.

    Z.B. Maroulis, K.K. Shah, and G.D. Saravacos, J. Food Sci. 56, 773 (1991).

    CAS  Article  Google Scholar 

  20. 20.

    H. Vargas and L.C.M. Miranda, Phys. Rep. 161, 45 (1988).

    Article  Google Scholar 

  21. 21.

    A.C. Bento, H. Vargas, M.M.F. Aguiar, and L.C.M. Miranda, Phys. Chem. Glasses 28, 127 (1987).

    CAS  Google Scholar 

  22. 22.

    O. Pessoa, Jr., C.L. César, N.A. Patel, H. Vargas, G.C.C. Ghizoni, and L.C.M. Miranda, J. Appl. Phys. 59, 1316 (1986).

    CAS  Article  Google Scholar 

  23. 23.

    A.P. Neto, H. Vargas, N.F. Leite, and L.C.M. Miranda, Phys. Rev. B 41, 9971 (1990).

    Article  Google Scholar 

  24. 24.

    N.F. Leite, N. Cella, H. Vargas, and L.C.M. Miranda, J. Appl. Phys. 61, 3025 (1987).

    CAS  Article  Google Scholar 

  25. 25.

    A. Torres-Filho, N.F. Leite, N. Cella, H. Vargas, and L.C.M. Miranda, J. Appl. Phys. 66, 97 (1989).

    CAS  Article  Google Scholar 

  26. 26.

    A.C. Bento, F.C.G. Gandra, E.C. da Silva, H. Vargas, and L.C.M. Miranda, Phys. Rev. B 45, 5031 (1992).

    CAS  Article  Google Scholar 

  27. 27.

    J.L.M. Lucio, J.J. Alvarado-Gil, O. Zelaya-Angel, and H. Vargas, Phys. Status Solidi A 150, 695 (1995).

    Article  Google Scholar 

  28. 28.

    M.V. Marquezini, N. Cella, A.M. Mansanares, H. Vargas, and L.C.M. Miranda, Meas. Sci. Technol. 2, 396 (1991).

    CAS  Article  Google Scholar 

  29. 29.

    A. Calderón-Arenas, R.A. Muñz Hernández, S.A. Tomas, A.C. Orea, and F. Sánchez Sinencio, J. Appl. Phys. 84, 6327 (1998).

    Article  Google Scholar 

  30. 30.

    O. Fred, Light Met. Age 1982 (Feb), 17–19.

  31. 31.

    L.W. Eastwood, Gases in Metals (American Society of Metals, Cleveland, OH, 1953), p. 23.

  32. 32.

    M.D. da Silva, I.N. Bandeira, L.C.M. Miranda, J. Phys. E: Sci. Instrum. 20, 1476 (1987).

    Article  Google Scholar 

  33. 33.

    A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).

    Article  Google Scholar 

  34. 34.

    C. Kittel, Introduction to Solid State Physics, 6th ed. (John Wiley & Sons, New York, 1986), pp. 106–107.

  35. 35.

    ASM Handbook, 9th ed., (ASM International Materials Park, OH), Vol. 2, p. 170.

  36. 36.

    A. Rosencwaig, Photoacoustic and Photoacoustic Spectroscopy (Robert E. Krieger, Malabar, FL, 1990), p. 96.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Manzano Ramírez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramírez, A.M., Beltrán, F.J., Yáñez-Limón, J.M. et al. Effects of porosity on the thermal properties of a 380-aluminum alloy. Journal of Materials Research 14, 3901–3906 (1999). https://doi.org/10.1557/JMR.1999.0528

Download citation