Deformation-induced microstructural changes in Fe40Ni40P14B6 metallic glass


The effect of mechanical deformation via high-energy ball milling on the structure of the Fe40Ni40P14B6 metallic glass was studied by means of x-ray diffactometry, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). After 5 h of milling, TEM observations indicated that some nanocrystallites with a diameter of about 6 nm precipitated from surface layers of the amorphous ribbons, whereas the bulk remained amorphous. When milling time was increased to 11 h, bulk crystallization occurred. The amorphous Fe40Ni40P14B6 alloy crystallized into a mixture of γ–(Fe, Ni) and (Fe, Ni)3(P, B). To understand the microstructural changes occurring in the amorphous ribbons before the onset of bulk crystallization, the isothermal crystallization behavior of as-deformed amorphous ribbons was studied. Compared with as-quenched amorphous ribbons, the local value of the Avrami exponent, derived from isothermal DSC data, increased from 3.5 to 4.1 for bulk crystallization. The thermal crystallization mechanism of deformed amorphous Fe40Ni40P14B6 ribbons changed from an eutectic-type reaction with simultaneous precipitation of γ–(Fe, Ni) and (Fe, Ni)3(P,B) from the amorphous matrix to a primary-type reaction with precipitation of α–Fe(P,B) preceding the formation of γ–(Fe,Ni) and (Fe,Ni)3(P,B). Our results suggest that several hours of mechanical milling cause surface crystallization and some atomic rearrangements in the amorphous alloy. The latter effect may be responsible for the observed primary-type reaction for crystallization of the deformed amorphous alloy

This is a preview of subscription content, access via your institution.


  1. 1.

    W.L. Johnson, Prog. Mater. Sci. 30, 81 (1986).

    CAS  Article  Google Scholar 

  2. 2.

    T. Masumoto and R. Maddin, Mater. Sci. Eng. 19, 1 (1975).

    CAS  Article  Google Scholar 

  3. 3.

    H.A. Davies and C.J. Small, J. Less-Common Met. 140, 185 (1988).

    CAS  Article  Google Scholar 

  4. 4.

    C.A. Pampillo, Scripta Metall. 6, 915 (1972).

    CAS  Article  Google Scholar 

  5. 5.

    H.S. Chen, H.J. Leamy, and H.J. O’Brien, Scripta Metall. 7, 115 (1973).

    Article  Google Scholar 

  6. 6.

    F. Spaepen, Acta Metall. 25, 407 (1977).

    CAS  Article  Google Scholar 

  7. 7.

    P.E. Donovan and W.M. Stobbs, Acta Metall. 29, 1419 (1981).

    CAS  Article  Google Scholar 

  8. 8.

    H. Chen, Y. He, G.J. Shiflet, and S.J. Poon, Nature 367, 541 (1994).

    CAS  Article  Google Scholar 

  9. 9.

    M.L. Trudeau, R. Schulz, D. Dussault, and A. Van Neste, Phys. Rev. Lett. 64, 99 (1990).

    CAS  Article  Google Scholar 

  10. 10.

    C. Bansal, B. Fultz, and W.L. Johnson, Nanostruct. Mater. 4, 919 (1994).

    CAS  Article  Google Scholar 

  11. 11.

    G.J. Fan, X.P. Song, M.X. Quan, and Z.Q. Hu, Nanostruct. Mater. 5, 433 (1995).

    CAS  Article  Google Scholar 

  12. 12.

    Y. He, G.J. Shiflet, and S.J. Poon, Acta Metall. Mater. 43, 83 (1995).

    CAS  Article  Google Scholar 

  13. 13.

    B-H. Huang, R.J. Perez, P.J. Crawford, S.R. Nutt, and E.J. Laver-nia, Nanostruct. Mater. 7, 57 (1996).

    Article  Google Scholar 

  14. 14.

    G.J. Fan, M.X. Quan, Z.Q. Hu, Y.L. Li, and Y. Liang, Appl. Phys. Lett. 68, 915 (1996).

    CAS  Article  Google Scholar 

  15. 15.

    J.L. Walter, S.F. Bartram, and R.R. Russell, Met. Trans. 9A, 803 (1978).

    CAS  Article  Google Scholar 

  16. 16.

    T. Watanabe and M. Scott, J. Mater. Sci. 15, 1131 (1980).

    CAS  Article  Google Scholar 

  17. 17.

    D.G. Morris, Acta Metall. 29, 1213 (1981).

    CAS  Article  Google Scholar 

  18. 18.

    M. Avrami, J. Chem. Phys. 7, 1103 (1939); M. Avrami, J. Chem Phys. 8, 212 (1940); M. Avrami, J. Chem. Phys. 9, 177 (1941).

    Article  Google Scholar 

  19. 19.

    A. Calka and A.P. Radlinski, J. Mater. Res. 3, 59 (1988).

    CAS  Article  Google Scholar 

  20. 20.

    S. Ranganathan and M. von Heimendahl, J. Mater. Sci. 16, 2401 (1981).

    CAS  Article  Google Scholar 

  21. 21.

    G.J. Fan, M.X. Quan, and Z.Q. Hu, Appl. Phys. Lett. 68, 319 (1996).

    CAS  Article  Google Scholar 

  22. 22.

    G.J. Fan, M.X. Quan, and Z.Q. Hu, J. Appl. Phys. 80, 6055 (1996).

    CAS  Article  Google Scholar 

  23. 23.

    J. Eckert, L. Schultz, E. Hellstern, and K. Urban, J. Appl. Phys. 64, 3224 (1988).

    CAS  Article  Google Scholar 

  24. 24.

    R.B. Schwarz and C.C. Koch, Appl. Phys. Lett. 49, 146 (1986).

    CAS  Article  Google Scholar 

  25. 25.

    W.B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, edited by G.V. Raynor (Pergamon Press, Inc. New York, 1976), p. 639.

  26. 26.

    K. Miyoshi and D.H. Buckley, Thin Solid Films 118, 363 (1984).

    CAS  Article  Google Scholar 

  27. 27.

    G.J. Fan, M.X. Quan, and Z.Q. Hu, Appl. Phys. Lett. 68, 1159 (1996).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to G.J. Fan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fan, G., Quan, M.X., Hu, Z.Q. et al. Deformation-induced microstructural changes in Fe40Ni40P14B6 metallic glass. Journal of Materials Research 14, 3765–3774 (1999).

Download citation