Skip to main content
Log in

Ultraviolet laser-induced liquid-phase palladium seeding on polymers

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Excimer laser pulses with wavelength of 308 nm, repetition rates of 1–10 Hz, pulse energies of 300–400 mJ, and pulse width of 20 ns are used to selectively seed palladium aggregates from a liquid-phase solution on polymer (polyimide) surfaces. The precursors used are PdCl2 in hydrochloric acid and Pd(CH3CO2)2 in acetic acid. The coverage of the polyimide with palladium aggregates is determined by the analysis of scanning electron microscopy measurements. Qualitative and quantitative analyses of seeded particles on polyimide (PI) are investigated by x-ray diffraction and transmission measurements. The amount of deposited palladium showed a quadratic dependence on the laser fluence reaching the surface. On the other hand, the coverage versus number of laser shots shows a square-root-like dependence. The palladium deposits also appear as amorphous and Pd[111] crystallites forms depending on the number of laser pulses. The roughness of a PI surface prior to seeding is modified mechanically and characterized by its fractal dimension. The fractal dimension of the samples varies between 2.3 and 2.7 for all the parameters applied, and the palladium deposition is found to be dependent on this dimension of the PI film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ehrlich and J.Y. Tsao, VLSI Electronics: Microstructure Science (Academic Press, New York, 1983), Vol. 7.

  2. L. Nánai, I. Hevesi, F.V. Bunkin, B.S. Luk’yanchuk, M.K. Brook, and G.A. Shafeev, in Proceedings of the Third International Symposium on Modern Optics (Budapest, 1988), Vol. 2, pp. 469–472.

  3. Y-F. Lu, M. Takai, T. Nakata, S. Nagatomo, and S. Namba, Appl. Phys. A 52, 129 (1991).

    Article  Google Scholar 

  4. Y-F. Lu, S.M. Huang, X.B. Wang, and Z.X. Shen, Appl. Phys. A 66, 543 (1998).

    Article  CAS  Google Scholar 

  5. P. Heszler, J.O. Carlsson, and P. Mogyorósi, J. Vac. Sci. Technol., A 11, 2924 (1993).

    CAS  Google Scholar 

  6. K. Bali, Zs. Geretovszky, A.L. Tóth, and T. Szörényi, Appl. Surf. Sci. 69, 326 (1993).

    Article  CAS  Google Scholar 

  7. J. Bohandy, B.F. Kim, and F.J. Adrian, J. Appl. Phys. 60, 1538 (1986).

    Article  CAS  Google Scholar 

  8. Z. Tóth, T. Szörényi, and A.L. Tóth, Appl. Surf. Sci. 69, 317 (1993).

    Article  Google Scholar 

  9. H. Moilanen, J. Remes, and S. Leppävuori, Phys. Scr. T69, 237 (1997).

    Article  CAS  Google Scholar 

  10. A.G. Schrott, B. Braren, E.J.M. O’Sullivan, R.F. Saraf, P. Bailey, and J. Roldan, J. Electrochem. Soc. 142, 944 (1995).

    Article  CAS  Google Scholar 

  11. K.G. Mishra and R.K. Paramguru, J. Electrochem. Soc. 143, 510 (1996).

    Article  CAS  Google Scholar 

  12. P. Bindra and J. Roldan, J. Electrochem. Soc. 132, 2581 (1985).

    Article  CAS  Google Scholar 

  13. H. Esrom, J-Y. Zhang, U. Kogelschatz, and A.J. Pedraza, Appl. Surf. Sci. 86, 202 (1995).

    Article  CAS  Google Scholar 

  14. H. Niino and A. Yabe, Appl. Phys. Lett. 60, 2697 (1992).

    Article  CAS  Google Scholar 

  15. T.J. Hirsch, R.F. Miracky, and C. Lin, Appl. Phys. Lett. 57, 1357 (1990).

    Article  CAS  Google Scholar 

  16. N. Almquist, Surf. Sci. 355, 221 (1996).

    Article  Google Scholar 

  17. H. Ehrenreich and D. Turnbull, Solid State Physics (Academic Press, New York, 1986), Vol. 39, pp. 219–227.

  18. J.M. Gómez-Rodriguez, A.M. Baró, L. Vázquez, R.C. Salvarezza, J.M. Varam, and A.J. Arvia, J. Phys. Chem. 96, 347 (1992).

    Article  Google Scholar 

  19. Cs. Beleznai, R. Vajtai and L. Nánai, Fractals 5, 275 (1997).

    Article  CAS  Google Scholar 

  20. J. Békési, K. Kordás, Cs. Beleznai, K. Bali, R. Vajtai, and L. Nánai, Appl. Surf. Sci. 138–139, 614 (1999).

    Google Scholar 

  21. J.C. Russ and J.C. Russ, in Microbeam Analysis (San Francisco Press, 1986), p. 509.

  22. J.C. Russ and J.C. Russ, Proceedings of EMSA (San Francisco Press, 1987), pp. 540–543.

  23. J.C. Russ, Computer-Assisted Microscopy (Plenum Press, New York, 1990), pp. 331–343.

  24. P. Karrer, Lehrbuch der Organischen Chemie (Georg Thieme, Leipzig, 1950), Vol. 4, pp. 91–135.

  25. J. McMurry, Fundamentals of Organic Chemistry, 3rd ed. (Brooks/Cole Publishing Co. Pacific Grove, California, 1994).

  26. G. Xomeritakis and Y-S. Lin, AIChE J. 44, 174 (1998).

    Article  CAS  Google Scholar 

  27. S. Yan, H. Maeda, K. Kusakabe, and S. Morooka, Ind. Eng. Chem. Res. 33, 616 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kordás, K., Békési, J., Bali, K. et al. Ultraviolet laser-induced liquid-phase palladium seeding on polymers. Journal of Materials Research 14, 3690–3694 (1999). https://doi.org/10.1557/JMR.1999.0498

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0498

Navigation